非负截面曲率流形的几何与拓扑

基本信息
批准号:11701427
项目类别:青年科学基金项目
资助金额:23.00
负责人:陈小杨
学科分类:
依托单位:同济大学
批准年份:2017
结题年份:2020
起止时间:2018-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:张彦龙,殷释一
关键词:
等距polar作用几何与拓扑非负截面曲率有理同伦论
结项摘要

Curvature and topology is one of central topics in Riemannian geometry. In this project we mainly study geometry and topology of manifolds with nonnegative sectional curvature and related problems. More precisely, we will make a comprehensive application of convergence theory of Riemannian manifolds, various topological tools and theory of isometric polar actions to attack the following problems:.1. Try to solve a problem proposed by Gromov and then construct a new class of special mapping from manifolds with nonnegative sectional curvature, which will be applied to study the topology of such manifolds and related important problems. .2. Construct a special class of mapping from some polar manifolds, which will be used to study the topology of such manifolds and related conjectures such as Grove-Ziller conjecture.

曲率与拓扑是黎曼几何的核心方向之一。在本项目中,我们主要研究非负截面曲率流形的几何与拓扑以及相关问题。具体来讲,我们将充分应用黎曼流形的收敛理论,拓扑学的诸多工具以及等距polar作用的理论深入研究以下问题:.1. 拟解决Gromov提出的一个问题,从而构造非负截面曲率流形上一类新的特殊映射,进一步利用它研究该类流形的拓扑以及相关重要问题;.2. 构造一类polar流形上的特殊映射,进一步利用它研究该类流形的拓扑以及相关重要猜想如Grove-Ziller猜想。

项目摘要

本项目主要研究了曲率与拓扑,群作用以及刚性问题。特别地,研究了曲率与Morse-Novikov 上同调群的关系,得到了几个新的消灭定理。从辛几何的角度研究了polar作用,并部分解决了辛几何中的Lerman-Montgomery-Sjamaar猜想。此外,给出了黎曼流形的曲率在某一点为常数的刻画,特别地得到了常曲率流形的一个新的刻画。迄今在Advances in Mathematics, Journal of Geometric Analysis, Archiv der Mathematik等杂志总共发表了三篇研究论文。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
2

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
3

五轴联动机床几何误差一次装卡测量方法

五轴联动机床几何误差一次装卡测量方法

DOI:
发表时间:
4

水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应

水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应

DOI:10.3864/j.issn.0578-1752.2019.03.004
发表时间:2019
5

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020

陈小杨的其他基金

相似国自然基金

1

曲率几乎非负的紧致Kahler流形的几何与拓扑

批准号:11601044
批准年份:2016
负责人:邵红亮
学科分类:A0109
资助金额:19.00
项目类别:青年科学基金项目
2

Alexandrov 几何中的若干问题及非负截面曲率流形的基本群

批准号:11001015
批准年份:2010
负责人:王雨生
学科分类:A0108
资助金额:16.00
项目类别:青年科学基金项目
3

具有非负截面曲率闭流形的基本群

批准号:10826052
批准年份:2008
负责人:王雨生
学科分类:A0108
资助金额:3.00
项目类别:数学天元基金项目
4

Ricci曲率几乎非负流形上的拓扑

批准号:11226080
批准年份:2012
负责人:武猛
学科分类:A0108
资助金额:3.00
项目类别:数学天元基金项目