非等熵可压缩磁流体方程组解的研究

基本信息
批准号:11901474
项目类别:青年科学基金项目
资助金额:25.00
负责人:钟新
学科分类:
依托单位:西南大学
批准年份:2019
结题年份:2022
起止时间:2020-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:
关键词:
非等熵可压缩MHD方程柯西问题强解适定性长时间行为
结项摘要

Compressible magnetohydrodynamic equations, which have deep physical background and practical significance, are the fundamental equations in the magnetic fluid mechanics. The well-posednes of strong solutions in multi-dimension is a hot issue in partial differential equations, and many famous mathematicians have made great contribution in this direction. When the initial data are close to a non-vacuum equilibrium, Japanese mathematician Kawashima obtained the global existence and uniqueness of classical solutions. However, his method does not work in the case of vacuum state, we need to some new theories and techniques. Our project will deal with global well-posedness and large time asymptotic behavior of strong solutions to the non-isentropic compressible magnetohydrodynamic equations. Details are as follows: I、global existence and large time asymptotic behavior of strong solutions to the two-dimensional Cauchy problem of non-isentropic compressible magnetohydrodynamic equations with vacuum as far-field density; II、global existence and large time asymptotic behavior of strong solutions to the three-dimensional Cauchy problem of non-isentropic compressible magnetohydrodynamic equations with vacuum as far-field density.

可压缩磁流体方程组是磁流体力学中的一个基本偏微分方程组,有着很强的物理背景和实际意义。高维可压缩磁流体方程组解的适定性是数学界一直关心的问题,也是近来国内外偏微分方程研究的一个热点问题之一。当初值在非真空平衡态附近扰动时,日本数学家Kawashima得到了非等熵可压缩磁流体方程组整体光滑解,但他的方法不再适用于含真空情形,这需要新的理论和技巧。本项目拟研究非等熵可压缩磁流体方程组强解的整体适定性以及解的长时间行为。具体如下:1、密度和温度在无穷远状态为零且初始密度允许带真空的二维非等熵可压缩磁流体方程组柯西问题强解的整体存在唯一性和解的长时间行为;2、密度和温度在无穷远状态为零且初始密度允许带真空的三维非等熵可压缩磁流体方程组柯西问题强解的整体存在唯一性和解的长时间行为。

项目摘要

项目负责人按照申请书中的研究计划,积极开展原创性研究。在项目执行期间,运用MHD方程组的结构、能量方法、奇异加权估计、拉格朗日坐标等工具取得了如下的研究成果:.(1)在非等熵可压缩MHD方程组解的适定性方面,项目负责人建立了二维含真空的零磁扩散Cauchy问题强解的存在性。此外,还与长春师范大学的刘洋合作,证明了三维远场含真空的Cauchy问题强解的整体适定性和熵有界解的存在性。.(2)在非均匀热传导MHD方程组强解的整体适定性方面,项目负责人证明了二维远场不含真空的大初值解的整体适定性,并得到了三维有界区域上解的整体存在性和长时间行为。.上述研究结果部分发表在Calculus of Variations and Partial Differential Equations、Journal of Differential Equations等国际知名学术期刊上。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
2

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020
3

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
4

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019
5

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020

钟新的其他基金

相似国自然基金

1

带阻尼项的非等熵可压缩欧拉方程组的研究

批准号:11161021
批准年份:2011
负责人:朱旭生
学科分类:A0306
资助金额:42.00
项目类别:地区科学基金项目
2

一类等熵可压缩Navier-Stokes型方程组的大初值整体解

批准号:11901148
批准年份:2019
负责人:黄丙康
学科分类:A0306
资助金额:28.00
项目类别:青年科学基金项目
3

非等熵可压缩Navier-Stokes方程解的大时间行为

批准号:11171153
批准年份:2011
负责人:秦晓红
学科分类:A0306
资助金额:40.00
项目类别:面上项目
4

非等熵可压缩Navier-Stokes-Korteweg方程的大初值整体光滑解

批准号:11501003
批准年份:2015
负责人:陈正争
学科分类:A0306
资助金额:18.00
项目类别:青年科学基金项目