Energy crisis and environmental pollution are two major problems for the society today. The hydrogen-based renewable energy system represents one of the most promising strategies, for which the development of environment-friendly and efficient visible-light-driven hydrogen producing photocatalysts plays a key role to its realization. This project will focus on the environment-friendly I-III-VI group multinary Cu-In-Ga-Zn-S solid solution quantum dots (QDs) photocatalyst system. On one hand, facile aqueous strategy will be explored for the systematic.manipulation of the composition, band structure, and surface properties of QDs to improve the light absorption and utilization. More importantly, according to its characteristics of long-lived excited states and abundant deep intrinsic trapping states, we aim to introduce the hole transporting units (phenothiazines etc) to improve the hole extraction efficiency as a function-guided design strategy towards the low efficiency and stability issues caused by trapped holes. In combination with the elucidation of the dynamics of the photo-generated.carriers by ultrafast spectroscopy, the energy levels and interface structure will be further optimized to improve the synergistic interaction of the components aiming for the screening of the QDs-based photocatalytic system with dramatically increased hydrogen production efficiency. Progress of this project will provide important scientific significance and practical prospects not only for the profound study of the photoelectronic property of the environment-friendly QDs photocatalyst systems, but also for the development of clean energy.
能源危机和环境污染是当今社会面临的两大难题,基于氢能的新型可再生能源体系代表了最具潜力的解决策略,而开发环境友好的高效可见光制氢催化剂则是其实现的关键。本项目拟针对环境友好I-III-VI族基多元Cu-In-Ga-Zn-量子点光催化剂体系,一方面通过开发简单水相策略来实现多元量子点的组分、能级、表面性质的系统调控,以提高光吸收和利用率。另一方面,进一步根据该体系激发态寿命长和丰富的深能级本征陷阱态的特点,针对被困空穴带来的效率低和稳定性差的问题进行功能导向设计,引入空穴传输单元(吩噻嗪等)提高空穴提取效率。结合超快光谱研究阐明相关光生载流子动力学,进一步通过优化能级位置和界面结构促进体系内各组分的协同作用,筛选优化量子点基复合光催化体系,实现产氢效率的飞跃。本项目的开展无论是对深化环境友好量子点基光催化体系的光电性质研究,还是对于清洁能源开发都具有重要的科学意义和实用前景。
能源危机和环境污染是当今社会面临的两大难题,基于氢能的新型可再生能源体系代表了最具潜力的解决策略,而开发环境友好的高效可见光制氢催化剂则是其实现的关键。本项目针对环境友好I-III-VI族基多元Cu-In-Zn-S和Ag-In-Zn-S量子点光催化剂体系,一方面通过开发简单水相策略来调控量子点的组分、能级、表面结构,以提高光吸收和利用率;另一方面根据该体系激发态寿命长和丰富的深能级本征陷阱态的特点,针对被困空穴带来的效率低和稳定性差的问题进行功能导向设计,引入空穴传输单元(二茂铁、酞菁等)提高空穴提取效率。并进一步通过与多重能级结构和富表面官能团碳点结合,通过合理的结构设计实现了空穴传输速率的极大提升。结合超快光谱研究阐明相关光生载流子动力学,进一步通过优化能级位置和界面结构促进体系内各组分的协同作用,筛选优化量子点基复合光催化体系,实现电子/空穴协同提取以及产氢效率的飞跃。本项目的开展无论是对深化环境友好量子点基光催化体系的光电性质研究,还是对于清洁能源开发都具有重要的科学意义和实用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
铁酸锌的制备及光催化作用研究现状
简化的滤波器查找表与神经网络联合预失真方法
倒装SRAM 型FPGA 单粒子效应防护设计验证
基于硅基半导体量子点的空穴自旋量子比特制备与操控研究
多元硫族化合物量子点异质结构的制备及其光伏性能研究
量子点修饰TiO2纳米管阵列异质结构及性能调控研究
纳米ZnO原位修饰电极绿色制备及结构简单的P450酶生物传感器