方程研究中的空间结构与泛函分析方法

基本信息
批准号:10971129
项目类别:面上项目
资助金额:24.00
负责人:石忠锐
学科分类:
依托单位:上海大学
批准年份:2009
结题年份:2012
起止时间:2010-01-01 - 2012-12-31
项目状态: 已结题
项目参与者:张子厚,刘春燕,章大卫,林立
关键词:
暴露点凸性SobolevOrlicz空间偏微分方程模范数
结项摘要

结合方程研究空间结构,给出Musielak-Orlicz空间中暴露点、强暴露点的充分必要条件;完善该空间的结构研究;在自然模范数下给出Sobolev-Orlicz空间一致凸性、弱一致凸性、弱*一致凸性的充分必要条件,开展该空间的系统研究;在Orlicz-Bochner 空间中给出PCP、CPCP的充分必要条件,为最终解决KMP、RNP问题提供新的思想和方法;用泛函分析的方法对一类方程给出障碍问题的解、讨论一类偏微分方程问题的适定性;争取最终解决Orlicz函数空间的装球精确值问题。

项目摘要

1.给出了赋自然模范数与共轭范数的MUSIELAK-ORLICZ空间中暴露点、强暴露点及空间暴露性、强暴露性的充要条件;2.对赋自然模范数的广义ORLICZ空间,给出了: a.函数空间中的λ点和λ性质的充要条件;b.序列空间中的非方点和非方性质的充要条件;3.对赋向量值的ORLICZ函数空间,给出了:a. 自然模范数与共轭范数下Noncreasy 性质一致noncreasy性质的充要条件;b. 自然模范数下非方点和非方性质的充要条件; c.自然模范数下单调点的充要条件;4.给出了自然模范数下Orlicz-Lorentz函数空间中的单调点的充要条件。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
3

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
4

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

DOI:10.3870/j.issn.1001-4152.2021.10.047
发表时间:2021
5

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

DOI:10.11821/dlyj020190689
发表时间:2020

石忠锐的其他基金

批准号:11771273
批准年份:2017
资助金额:48.00
项目类别:面上项目
批准号:11271245
批准年份:2012
资助金额:50.00
项目类别:面上项目
批准号:10671118
批准年份:2006
资助金额:15.00
项目类别:面上项目
批准号:19641005
批准年份:1996
资助金额:2.00
项目类别:专项基金项目

相似国自然基金

1

积-微分型数理方程中的泛函分析方法

批准号:19671090
批准年份:1996
负责人:匡志峰
学科分类:A0206
资助金额:5.00
项目类别:面上项目
2

非线性泛函分析方法与微分方程边值问题

批准号:11371221
批准年份:2013
负责人:刘立山
学科分类:A0206
资助金额:68.00
项目类别:面上项目
3

非线性泛函分析方法及其在微分方程中的应用

批准号:10471075
批准年份:2004
负责人:刘立山
学科分类:A0206
资助金额:26.00
项目类别:面上项目
4

白噪声泛函分析与无穷级随机方程

批准号:19071063
批准年份:1990
负责人:黄志远
学科分类:A0210
资助金额:0.80
项目类别:面上项目