不连续保守系统和类不连续系统的特征动力学行为

基本信息
批准号:19975039
项目类别:面上项目
资助金额:8.00
负责人:何大韧
学科分类:
依托单位:扬州大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:丁晓玲,王旭明,王健,姚文静
关键词:
KAM定理类不连续系统不连续保守系统
结项摘要

Discontinuous models describe qualitative sudden changes after a long gradual change process in a system. They may display very different dynamical characteristics from what a continuous system displays. Based on the study on characteristics of discontinuous dissipative systems performed by our research group during the previous two National Science Foundation projects firstly the characteristics of discontinuous conservative systems have been investigated in the current NSF project. We have analytically deduced a discontinuous conservative model of an electronic relaxation oscillator and the simplified models of it, studied the so-called "quasi-dissipative" behaviors displayed by the models, defined some new concepts such as "quasi-attractor", "quasi-transience", "quasi-basin", and investigated the characteristics of period-doubling bifurcation and some new phenomena like "quasi-crisis", "quasi- intermittency" and the escaping from the strange "quasi-transient set". In another view of point, the sudden changes those are ideally described by the discontinuous models actually happen in finite time durations. One gets a continuous picture if using a large-enough number of parameters and variables and a fast-enough sampling speed to make a description with enough details. The only special thing is the relatively very different "slow change" and "quick change" behavior there. We have constructed two simplified models of so-called "quasi-discontinuous systems" based on Rose-Hindmarsh model describing the activities of nerve cells and model of Pikovsky circuit. Via studies on these simplified models and the corresponding practical models we defined some new concepts like "quasi-discontinuous system", "quasi-discontinuous region", "quasi- discontinuity" and investigated probably the most important characteristics in quasi-discontinuous systems, i.e. the extraordinary large Feigenbaum constants region in period-doubling bifurcation cascades and the intermittency between type I and type V. In summary, the project has been accomplished according to original research plan, some additional achievements, those were not mentioned in the original application, have been obtained as well.

建议研究几种连续保守系统及类不连续系统模型的特征行为,特别是前者中KAM定理受到破邓斐傻挠跋臁⑼衷膊欢愕母髦址植淼奶卣鳎昂笳咧邢蚧煦绻傻奶卣鳎⑻剿鞫陨鲜鎏卣骷肮媛伤魑氯鲜兜氖导庖搴涂赡苡τ谩Tぜ平⑾忠幌盗惺艿酵凶⒁獾男赂拍睢⑿禄啤⑿鹿媛伞K玫某晒┱狗窍咝远ρУ娜鲜叮姆⒄棺鞒龉毕住

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
3

卫生系统韧性研究概况及其展望

卫生系统韧性研究概况及其展望

DOI:10.16506/j.1009-6639.2018.11.016
发表时间:2018
4

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018
5

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

DOI:
发表时间:2018

何大韧的其他基金

批准号:10275053
批准年份:2002
资助金额:22.00
项目类别:面上项目
批准号:19275033
批准年份:1992
资助金额:3.10
项目类别:面上项目
批准号:19575037
批准年份:1995
资助金额:5.00
项目类别:面上项目
批准号:70671089
批准年份:2006
资助金额:18.50
项目类别:面上项目
批准号:10635040
批准年份:2006
资助金额:150.00
项目类别:重点项目
批准号:70371071
批准年份:2003
资助金额:17.00
项目类别:面上项目

相似国自然基金

1

右端不连续系统动力学特性研究

批准号:60774074
批准年份:2007
负责人:陈天平
学科分类:F0304
资助金额:28.00
项目类别:面上项目
2

平面连续与不连续系统的若干定性性质

批准号:11771315
批准年份:2017
负责人:刘长剑
学科分类:A0301
资助金额:48.00
项目类别:面上项目
3

非线性不连续系统的稳定与镇定

批准号:60874006
批准年份:2008
负责人:慕小武
学科分类:F0301
资助金额:30.00
项目类别:面上项目
4

右端不连续奇摄动系统的多尺度研究

批准号:11871217
批准年份:2018
负责人:倪明康
学科分类:A0301
资助金额:53.00
项目类别:面上项目