The functionalization at material surface/interface is a core step to achieve various applications of materials especially those high value-added applications such as aerospace, biomedicine and new energy. Currently, the biggest challenge in this field is short of a universal surface chemistry that is generally applicable on the surface of virtually arbitrary materials such as polymers (especially low energy inert polyolefin), inorganic and metals. This project proposes an innovative design that by learning from amyloid-mediated bioadhesion in nature, the lysozyme as a typical amyloidogenic protein, is manipulated to assembly into amyloid-like phase-transited nanofilm on materials of almost any kind with multifunctions and robust adhesion strength, thereby solving the core problem in the field of the functionalization at material surface/interface. The research will firstly study how the amino acid sequence of lysozyme induces the assembly process, and it is expected that certain core region of amino acid sequence of lysozyme could be screened to control the conformation change and subsequent amyloid-like assembly of lysozyme. After that, the research will move on the study on the adhesion mechanism between the phase-transited lysozyme nanofilm and the surfaces of various materials typically including organic, inorganic, metals and polymers. By this study, it is planned to elucidate the interaction models between the phase-transited lysozyme nanofilm and these surfaces with different chemical compositions. Based on precise manipulation of the phase-transited assembly and its surface adhesion as well as extension of such mechanism to other typical amyloidogenic proteins, the research will finally endeavour to establish a set of methodology that is capable of learning and finally surpassing the natural amyloid-mediated bioadhesion to afford proteinaceous interfacial biomimetic materials with powerful and universal interfacial priming capabilities as well as multifunctions. The establishment of this scientific system is expected to completely abandon the tedious surface modification/functionalization steps used in traditional surface modification methods, so as to effectively solve the key issue in the field of the functionalization at material surfaces/interfaces and provide a universal coating material for directly priming any kinds of material surface with strong adhesion strength and multiple secondary functions.
材料表界面功能化是实现材料用途,特别是实现航天航空、生物医药、新能源等高附加值应用的一个关键环节。此领域目前所面临的挑战是缺少对高分子(特别是低表面能惰性基材)、金属和无机都适合的普适性表界面改性方法。本项目创新性地以溶菌酶为模型蛋白质进行水相温和的类淀粉样组装,通过模拟自然界淀粉样蛋白质组装体在表界面的稳定粘附,研究在宽范围的多种材料表界面上直接一步水相构筑粘附稳定、功能多样的类淀粉样蛋白质组装膜,从而解决材料表界面功能化领域的核心难题。通过在微观尺度上分析引发溶菌酶进行新型淀粉样组装的氨基酸序列核心区域,以及蛋白质组装体与包括金属、有机、无机和高分子在内的各种材料表界面之间的相互作用机制,阐明直接在各种材料表界面构建溶菌酶界面组装材料的作用机理。在此基础上,通过对溶菌酶组装策略的精准调控、拓展到其他淀粉样蛋白质体系及功能探索,全面建立和发展仿淀粉样聚集和粘附的蛋白质组装界面材料新体系。
材料表界面功能化是实现材料用途,特别是实现航天航空、生物医药、新能源等高附加值应用的一个关键环节。此领域目前所面临的挑战是缺少对高分子(特别是低表面能惰性基材)、金属和无机都适合的普适性表界面改性方法。本项目创新性地以溶菌酶为模型蛋白质进行水相温和的类淀粉样组装,通过模拟自然界淀粉样蛋白质组装体在表界面的稳定粘附,研究在宽范围的多种材料表界面上直接一步水相构筑粘附稳定、功能多样的类淀粉样蛋白质组装膜,从而解决材料表界面功能化领域的核心难题。围绕拟解决的科学问题,最终实现对溶菌酶组装策略的精准调控,并拓展到其他淀粉样蛋白质体系,建立和发展仿淀粉样聚集和粘附的蛋白质组装界面材料新体系。.针对上述挑战,我们设计和开发了三种策略以解决上述难点:.第一,创新性地利用解折叠蛋白质的类淀粉样组装,在多种材料表界面构筑粘附稳定、功能多样的类淀粉样蛋白质组装膜,从而解决材料表界面功能化领域的核心难题。并证明多种蛋白质都具有界面改性能力,创制了一套蛋白质界面改性技术及功能化方法。.第二,通过在微观尺度上分析引发溶菌酶进行新型淀粉样组装的氨基酸序列核心区域,以及蛋白质组装体与包括金属、有机、无机和高分子在内的各种材料表界面之间的相互作用机制,阐明了蛋白质界面组装材料的作用机理。.第三,基于上述基础,通过对解折叠蛋白质组装策略的精准调控、全面实现了蛋白质涂层功能化应用,特别是在牙小管封堵和牙釉质在矿化领域取得开创性成绩。此外,利用蛋白质与贵金属及有机物的吸附和配位机制,发展蛋白质基贵金属及有机物分离及吸附材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于二维材料的自旋-轨道矩研究进展
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
界面诱导淀粉样聚集体粘附的分子机制
基于解折叠蛋白质链松弛的淀粉样结晶机制研究
蛋白质淀粉样纤维形成动力学的建模、分析和预测
淀粉样多肽在固体表面纳米水层中自组装行为研究