多复变中与群作用相关问题的研究

基本信息
批准号:11671399
项目类别:面上项目
资助金额:48.00
负责人:张会平
学科分类:
依托单位:中国人民大学
批准年份:2016
结题年份:2020
起止时间:2017-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:王世坤,丁璐,袁喆,朱余韬
关键词:
全纯自同构Stein群作用逆紧全纯映照流形多次调和函数
结项摘要

This project is mainly to study the Stein manifolds with group actions as well as the properties and structures of the holomorphic mappings between them. It is an important view to study several complex variables by using the theory of group actions. Many famous researchers have been paying close attention to this direction. The applicants of this project have been doing research on this direction and have got some experiences and results which have been published on or accepted by Math.Z., Trans. AMS., Comm.A.G., J.M.P.(see references [11],[15],[35],[36]).. Several problems as follows will be discussed on the basis of our previous work by using the theories and tools of group actions, combining with the theories and methods in several complex variables:. To study the orbit connectedness and orbit convexity of invariant domains and their roles in the analytic continuation problems;To discuss the special geometric and analytic properties of the boundary of invariant domains, and their applications in studying of proper holomorphic mappings between invariant domains. To study the minimum principle for plurisubharmonic functions and explore the relationship between plurisubharmonic functions, Bergman kernels and group actions. To explore the generalization of the theory of vertex operator algebras to Riemann surfaces with higher genus by using of the Krichever-Novikov basis.

本项目着重研究带有群作用的Stein流形及其间的全纯映照的性质与结构。利用群作用一般理论研究多复变相关问题是一个重要视角,受到国内外知名学者的密切关注。本项目申请人近几年在该方向进行探索,有一定的工作积累,发表或接受发表在Math.Z., Trans.AMS., Comm.A.G., J.M.P.等期刊上(见参考文献[11][15][35][36])。. 本项目拟在前期的工作基础上,利用群作用的理论和工具,结合多复变的理论和方法考虑以下问题:探讨群作用不变区域的轨道连通性及轨道凸性在多复变解析延拓问题中的作用;探讨不变区域边界具有的特殊几何、解析性质,及其在研究紧与非紧李群不变区域间的逆紧全纯映照中的运用;研讨多次调和函数的极小原理,多次调和函数、Bergman核与群作用的关系;探索利用黎曼面上的Krichever-Novikov基将顶点算子代数理论推广到高亏格黎曼面上。

项目摘要

利用群作用一般理论研究多复变相关问题是一个重要视角,已受到国内外知名学者的密切关注。本项目着重研究带有群作用的Stein流形及其间的全纯映照的性质与结构。本项目也研究多次调和函数、逆紧全纯映照等多复变中的核心研究对象。本项目将多位著名数学家的重要工作做了统一并拓展到更一般的框架、得到了新的结果。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021
2

水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应

水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应

DOI:10.3864/j.issn.0578-1752.2019.03.004
发表时间:2019
3

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020
4

抗生素在肿瘤发生发展及免疫治疗中的作用

抗生素在肿瘤发生发展及免疫治疗中的作用

DOI:10.3760/cma.j.cn371439-20200423-00009
发表时间:2021
5

东部平原矿区复垦对土壤微生物固碳潜力的影响

东部平原矿区复垦对土壤微生物固碳潜力的影响

DOI:10.13225/j.cnki.jccs.xr21.1686
发表时间:2022

张会平的其他基金

批准号:10701077
批准年份:2007
资助金额:10.00
项目类别:青年科学基金项目
批准号:21176086
批准年份:2011
资助金额:60.00
项目类别:面上项目
批准号:40702028
批准年份:2007
资助金额:19.00
项目类别:青年科学基金项目
批准号:20876053
批准年份:2008
资助金额:30.00
项目类别:面上项目
批准号:29676035
批准年份:1996
资助金额:12.00
项目类别:面上项目
批准号:29276252
批准年份:1992
资助金额:4.40
项目类别:面上项目
批准号:21376101
批准年份:2013
资助金额:80.00
项目类别:面上项目
批准号:10626054
批准年份:2006
资助金额:3.00
项目类别:数学天元基金项目
批准号:41272196
批准年份:2012
资助金额:85.00
项目类别:面上项目

相似国自然基金

1

多复变中Schwarz引理相关问题的研究

批准号:11101373
批准年份:2011
负责人:刘洋
学科分类:A0202
资助金额:23.00
项目类别:青年科学基金项目
2

多复变与复几何前沿问题研究

批准号:11431013
批准年份:2014
负责人:周向宇
学科分类:A0202
资助金额:280.00
项目类别:重点项目
3

多复变几何函数论与调和分析的相关问题

批准号:10571044
批准年份:2005
负责人:刘浩
学科分类:A0202
资助金额:25.00
项目类别:面上项目
4

多复变与复几何中的李群作用

批准号:11001148
批准年份:2010
负责人:邓富声
学科分类:A0202
资助金额:16.00
项目类别:青年科学基金项目