This item is relative to chaos、substitution systems and Feigenbaum.phenomenon in the field of dynamical systems. The several respects are all the.popular subject. The item group investigated the relations between.distributional chaos and other notions to illustrate the complex degree of a system. It has been proved that distributional chaos and Li-Yorke chaos are not generally equivalent, that an interval map with positive topological entropy has a distributionally scrambled set whose points are almost periodic, and that a minimal substitution system of constant length must be not chaotic etc. The notion of distributional chaos in a sequence was introduced. It was proved that this notion is not equivelent to distributional chaos. In adition, a proof for the existence of p order Feigenbaum maps was given. These results have important theoretical significance for revealing the internal law of chaotic motion, and for clearing the substance of chaotic motion and the mathematical basis of Feigenbaum’s phenomenon.
本项目涉及动力系统中混沌、代换系统与Feigenbaum现象等几个方面。重点考察分布混沌与其它各种刻划系统复杂程度的概念之间的关系,代换系统的动力性态以及Feigenbaum映射拟极限集的存在性等问题。本项目研究对于揭示混沌运动的内在规律,弄清混沌运动的本质以及Feigenbaum现象的数学基础具有重要的理论意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
钢筋混凝土带翼缘剪力墙破坏机理研究
非线性电路与系统中混沌现象的研究
哈密尔顿系统混沌现象的有限元研究
耦合时滞混沌系统中的自组织现象
基于混沌现象的交流传动系统不规则运动分析与控制