The degradation of refractory chemical wastewater is a big challenge of wastewater treatment, which is also the key factor restricting the development of chemical industry. Boron doped diamond (BDD) film electrode can effectively produce free radical to oxide and mineralize the pollutants, which has been considered as an efficient and green technology among advanced oxidation processes. However, the industrialized application of BDD has been limited due to its low current efficiency and high cost. In this project, we propose to investigate the growth dynamic behavior of the BDD film electrode. By fabricating the three-dimensional structure BDD anode, we can improve the electrochemical active area of the electrode. On this basis, we can grow Fe2O3-TiO2 nanosheet arrays, thus constructing nanoscale p-n junction photoelectric-Fenton composite electrode. By controlling the morphology and structure of Fe2O3-TiO2/BDD electrode, we would achieve photoelectric-Fenton synergistic catalysis, which can improve the degradation efficiency of the pollutant and reduce the energy consumption. In the photoelectric-Fenton catalysis system, we select nitrobenzene and p-chloroaniline as simulated pollutants, research on dynamics behavior of the synergistic catalytic degradation of pollutants. Spectral analysis and interface research will also be adopted to study the relationship between the structure of the electrode and performance of photoelectrocatalysis, thus revealing the degradation pathways and mechanisms of the pollutants. This project will provide some new ideas and materials for the treatment of refractory chemical wastewater.
难降解化工废水是水处理的难点,是制约化工行业发展的问题之一。硼掺杂金刚石(Boron doped diamond,BDD)膜电极可以有效产生活性自由基对污染物进行矿化分解,是绿色、高效的高级氧化技术,但是电流效率低和处理成本昂贵,限制了其工业化应用。本课题将探明BDD生长动力学行为,基于纳米级BDD制备具有三维结构的阳极,提升BDD电极的活性面积,在此基础上生长Fe2O3-TiO2纳米片阵列,构建纳米尺寸p-n结的光电Fenton复合电极。通过调控Fe2O3-TiO2/BDD形貌和结构,实现光电-Fenton协同催化,提高体系的矿化效率和降低能耗。以硝基苯、氯苯胺等为模拟污染物,研究光电Fenton体系协同降解污染物动力学行为,借助光谱分析和光电界面研究,获得材料结构与光电催化性能间的构效关系,揭示污染物的降解机理和途径。本项目的开展将为难降解化工废水处理提供新材料和新思路。
难降解化工废水是水处理的难点,是制约化工行业发展的问题之一。硼掺杂金刚石(Boron doped diamond,BDD)膜电极可以有效产生活性自由基,对污染物进行矿化分解,是绿色、高效的高级氧化技术,但是电流效率低和处理成本昂贵,限制了其工业化应用。本研究探明了BDD的生长动力学行为,成功制备了 纳米级BDD,有效提升了BDD电极的活性面积。通过构建二元及三元纳米片,调控其形貌和结构,并对其电化学性能研究,揭示了催化剂的微观形貌和内部电子结构的改善,有效降低了反应的过电势,表明了其在大电流密度下具备优异的阳极电催化性能;而且,在较大电流密度下连续运行,显示出良好的稳定性,具有应用于实际工业电解水的潜力。此外,以硝基苯、2,4-二氯苯酚等为模拟污染物,研究电化学降解污染物动力学行为,借助光谱分析和电化学界面研究,获得材料结构与电催化性能间的构效关系,揭示了污染物的降解机理和途径。本项目的开展将为难降解化工废水处理提供新的电极材料和新思路,为开发高效低耗电催化工艺提供有益借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
拉应力下碳纳米管增强高分子基复合材料的应力分布
耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响
难降解废水厌氧处理工艺的状态诊断研究
掺硼金刚石膜电极电化学氧化持久性难降解有机污染物的机理研究
脉冲等离子体耦合介孔炭凝胶催化氧化难降解化工废水
三维多孔钛基掺硼金刚石薄膜电极及其对水中有毒难降解有机污染物的电催化氧化作用