泛函空间及其应用

基本信息
批准号:19971019
项目类别:面上项目
资助金额:11.00
负责人:吴从忻
学科分类:
依托单位:哈尔滨工业大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:张传义,段延正,付永强,吴冲,李宝麟,叶国菊,刘晓颖
关键词:
泛函空间无穷维分析概周期函数
结项摘要

Functional space and its application is an important branch in mathematics and closely connect with control theory, theoritic physic, economic system and so on. The researching direction of the project is some classes of concrete.functional spaces, such as K鰐he sequence space, Orlicz space, almost periodic.function space etc, fixed point theory, set-valued analysis and their application to the differential equation, integral equation and fuzzy analysis. The main achievements are as follows: (1) We get the characterization of the existence of continuous selection for a class of set-valued mappings and the approximate theorem for nonconvex set-valued mappings, which improve and generalize many previous results. We also define the.weak Radon-Nikodym derivative and obtain the weak Radon-Nikodym theorem, and.give some applications. (2) By using the ergodicity we prove the existence and uniqueness of pseudo almost periodic solution and asymptotically almost periodic solution for some classes.of nonlinear differential equations, and give the characterizations for the pseudoalmost periodic function space and the vector-valued weak almost periodic function space. (3) We introduce and characterize the AK-property of infinite matrix, and give the characterization of that the completely continuous infinite matrix operator ideal is minimal and closed in the strong topo logy sense..(4) We construct two concrete function spaces and obtain the existence theorem.of maximal and minimal solutions of the initial value problem for the implusive and discontinuous integro-differential equations of mixed type. (5) We establish the fixed point theorems for many kinds of operators and set-valued mappings which improve and generalize some previous results, and apply to the differential equations, integral equations and differential inclusions..(6) We construct some kinds of concrete Frechet spaces and Banach spaces and.solve the difficult problem for the embedding of multidimensional fuzzy numbers.

本项目是关于无穷维分析,包括对魁特型序列空间、奥尔里奇型空间及概周期函数空间等这些特殊空间的研究,以及它们的应用,并进一步刻划一般泛函空间(包括算子空间)的各种属性,反映了泛函分析中历来受到高度重视,而最近显示出格外突出的空间理论的研究的主流,且对非线性偏微分方程、动力系统、控制论及逼近论有广泛的应用。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
3

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
4

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
5

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016

吴从忻的其他基金

批准号:18670534
批准年份:1986
资助金额:0.50
项目类别:面上项目
批准号:19671021
批准年份:1996
资助金额:6.00
项目类别:面上项目
批准号:19371025
批准年份:1993
资助金额:2.00
项目类别:面上项目

相似国自然基金

1

泛函空间上梯度流及其应用

批准号:11671109
批准年份:2016
负责人:薛小平
学科分类:A0208
资助金额:48.00
项目类别:面上项目
2

泛函分析及其应用

批准号:10271053
批准年份:2002
负责人:马吉溥
学科分类:A0206
资助金额:18.50
项目类别:面上项目
3

泛函积分及其应用

批准号:18870445
批准年份:1988
负责人:杨亚立
学科分类:A0301
资助金额:0.50
项目类别:面上项目
4

泛函分析及其应用

批准号:19271035
批准年份:1992
负责人:马吉溥
学科分类:A0206
资助金额:2.40
项目类别:面上项目