Aluminum is a widely exposed neurotoxicant. Excessive exposure to aluminum induces cognitive impairment. Synaptic plasticity impairment and neural apoptosis are main toxic mechanism caused by aluminum.Aluminum ions enters easily into nucleus and aggregate chromosomes, and promote binding of linker histones with core histones,thus inhibit normal gene transcription in neural cells. Recent research indicated that histone lysine methylation modification regulates learning and memory function via H3K4 methyltransferase MLL-H3K4mes level-Egr1 and BDNF expression, a three leveled regulation chain. We suppose that aluminum might interfer with PHD zinc finger domain of MLL, inhibit chain of MLL-H3K4mes-Egr1 and BDNF described above, impair synaptic plasticity and decrease learning and memory ability. With occupationally Al-exposed population cohort prospective study,in vivo study, and in vitro study with MLL highly expressed cell lines , we explore effects of H3K4 methyltransferase inhibition- MLL-H3K4mes level variation-Egr1 and BDNF expression on aluminum-induced learning & memory impairment and neural apoptosis, and clarify the effect mechanism of every link of this regulation chain, in order to investigate aluminum-induced neurotoxicity from the viewpoint of epigenetics. Furthermore, This study not only provides new informations for investigating the mechanism of aluminum-induced cognitive impaiment, but also try to take these proteins as biomarkers for Al-induced neurotoxicity.
铝是广泛接触的神经毒物,过量接触引起认知功能损害,铝神经毒性机制主要为突触可塑性损害和神经细胞凋亡。铝离子易进入细胞核,对染色体有凝聚作用,促进连接组蛋白与核心组蛋白的结合,从而使神经细胞正常转录抑制。最新研究提示组蛋白赖氨酸甲基化修饰通过H3K4甲基转移酶MLL - H3K4me3水平 - Egr1和BDNF表达三级调控链调节学习记忆功能。我们推测铝通过干扰MLL的PHD锌指结构域,抑制了上述环节,损害突触可塑性,降低学习记忆功能。本课题通过铝接触职业人群队列研究,动物体内实验、高表达MLL细胞株体外实验,研究铝致H3K4甲基转移酶MLL抑制- H3K4me3水平改变-Egr1和BDNF表达改变在铝致学习记忆损害和神经细胞凋亡中的作用,阐明在铝作用下该调控链中各环节的作用机制,从表观遗传角度研究铝的神经毒性,为探讨铝致认知功能损害机制提供新资料,并尝试将上述蛋白作为铝致神经毒性生物标志。
铝是广泛接触的神经毒物,过量接触引起认知功能损害。铝离子易进入细胞核,对染色体有凝聚作用,促进连接组蛋白与核心组蛋白的结合,从而使神经细胞正常转录抑制。最新研究提示组蛋白赖氨酸甲基化修饰通过H3K4甲基转移酶MLL - H3K4me3水平 - Egr1和BDNF表达三级调控链调节学习记忆功能。我们推测铝通过干扰MLL的PHD锌指结构域,抑制了上述环节,损害突触可塑性,降低学习记忆功能。.课题通过铝接触职业人群队列研究,探讨了职业性铝接触工人轻度认知功能障碍及分型,高血铝组MCI检出率明显高于低血铝组(p=0.026); 高血铝组MCI患者中遗忘型轻度认知功能障碍(aMCI)占MCI的构成比明显高于低血铝组(p =0.014)。全血样本分析,铝暴露组相对于对照组全基因组甲基化降低,MCI患者全基因组甲基化低于非MCI患者。外周血淋巴细胞H3K4me3水平随血铝升高而降低(P=0.031); H3K9me2水平随血铝升高而升高(p=0.001); H3K27me3升高(p=0.028); 血浆BDNF蛋白降低(p=0.005), EGR1蛋白表达降低(p=0.001)。.动物体内实验显示,随着染铝剂量增加,大鼠记忆能力下降,海马全基因组甲基化降低(p=0.00); H3K4甲基转移酶MLL活力降低;去甲基化酶PHF8的表达量下降(P=0.00);乙酰化状态H3K9ac表达量明显下降(p=0.001),二甲基化状态H3K9me2表达量上升(p=0.01); 染色质蛋白HP1表达量升高(p=0.004); EGR1蛋白和BDNF表达量降低(p=0.000, p=0.001); NMDAR、p-ERK的表达量均降低(p=0.02, p=0.01);突触可塑性(LTP)降低, 还涉及到caspase-3活化,Akt裂解,GSK-3活化,AMPA受体外化。.本研究证实了我们的科学假设,铝通过干扰MLL的PHD锌指结构域,降低MLL活力,降低PHF8活力,提高了组蛋白乙酰化修饰,抑制了组蛋白甲基化修饰, H3K4me3水平降低,进而降低EGR1和BDNF蛋白,损害突触可塑性,降低学习记忆功能。此外,我们还发现,在H3K4me3水平降低的同时,H3K9me2、H3K27me3水平升高,提示在组蛋白甲基化修饰过程中,不同残基位点、不通甲基化状态之间存在相互作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver
组蛋白赖氨酸甲基化修饰对癌干细胞重编程的作用机制研究
组蛋白乙酰化修饰调控苯并[a]芘神经发育毒性的机制研究
赖氨酸琥珀酰化调控组蛋白及DNA甲基化的分子机理
铝免疫毒性的神经内分泌调控机制