Research on emergency response is very important for national economic development and social stability in modern society. The survivability of network systems is expected to be sufficiently robust against unpredictable breakdown in order to function constantly. There are many redundancy and free resources in network systems which were not used sufficiently and so cannot be reconfigured effectively under emergency. Confronting this situation, this project researched the strategies of network resources optimization and reconfiguring according to the hierarchical network architecture, in order to enhance the survivability of an existing network system under emergency. The main contents of this project are as follows: In the topology layer, during the study of survivability enhancement of existing network structures, how to ensure the optimal reconfiguring of limited network resources achieved and in times has been an urgent problem which needs to be solved. The concepts of the node-protecting cycles (np-cycles) and the reconfigurable node are developed to research the strategies and algorithms of adding limited link resources in homogeneous networks and adding minimum wireless communication resources in heterogeneous networks are proposed, which will ensure that the resulting networks are the most robust and efficient. In the resource management layer, a large-span resources distribution model on the basis of the dynamic changing of the topology structure and the availability of resource node is established, the algorithm of resource reconfiguring for emergency response is proposed, ensured the optimal configuration of the whole network resources under emergency. In the application service layer, survivability is the important requirement on many critical networked infrastructures such as fire-fighting automation system (FAS) for intelligent buildings. The project investigates resources optimizing and reconfiguring of homogeneous networks to resolve the safety problems coming from the vulnerability of network structures in intelligent building. All these will provide beneficial and important guidance for designing, optimizing and reconfiguring of network systems in this project.
突发公共事件的快速反应和应急处置对经济发展和社会稳定至关重要。针对异构网络系统中普遍存在冗余资源和空闲资源未被充分利用、无法实现应急情况下响应重构的问题,本项目以应对事件提升现有网络系统可生存性为目标,研究分层网络系统资源优化与重构的策略和算法。具体来看,在网络拓扑层,提出节点保护圈和可重构节点概念,研究同构网内有限添加边资源和异构网间空闲无线资源优化配置的策略和算法,实现最优网络拓扑重构;在资源管理层,基于未知的拓扑结构和节点可用性,建立大跨度资源分布模型,提出面向应急响应的资源重构算法,以保证网络整体资源的最优化配置;其中,网络拓扑重构是应急大跨度资源重构的前提和保障。在应用服务层,以火灾事件为例研究智能建筑中异构网络资源的优化配置,解决智能建筑中由于网络结构脆弱所导致的诸多安全隐患。本项目研究对于改进网络系统设计、实现网络资源合理配置、提升网络系统生存能力具有重要理论指导和现实意义。
突发公共事件的快速反应和应急处置对经济发展和社会稳定至关重要。针对现有异构网络系统中普遍存在冗余资源和空闲资源未被充分利用、且不能在应急情况下响应重构的问题以及其他安全问题,本项目主要开展了以下三方面的研究:.一、关注网络拓扑优化,开展了基于可利用资源优化配置网络拓扑的策略和算法研究。为求解资源受限的网络拓扑重构优化问题,提出了节点保护圈和加强节点保护圈的方法,该方法不仅能够有效保护单个节点失效,也能有效保护多个相邻节点的同时失效;提出了优先配置节点加强保护圈(Preferential configuration enhanced node- protecting cycles,简称PCNC)的启发式算法,该PCNC算法在有限资源约束的随机局部攻击和选择性攻击的动态网络环境中,能兼顾改善网络鲁棒性和传输效率,有效提升网络拓扑结构的可生存性。.二、关注网络传输效率,开展基于有限网络资源提升网络容量的方法研究。突发事件下,网络节点或边移除不仅会影响网络连通性,也会使网络流量分布和节点负载变化而影响网络传输,基于网络负载容量和节点最大介数成反比的思想,我们提出了一种通过减少网络节点最大介数以提高网络容量的添加边方法;我们也提出了一种在无标度网络中基于有限添加边资源提升网络容量的方法,该方法通过有限添加边资源优化配置以最大化提升不确定网络环境下的网络容量。.三、关注异构无线网络中的安全问题,对适合于异构无线网络的的漫游认证方案和漫游协议进行研究。异构无线网络相对于传统网络更容易受到攻击和存在安全隐患,为保证异构无线网络的安全,需要部署安全认证、访问控制等措施。分析传统的匿名漫游认证协议,指出了其存在匿名不可控和通信时延较大的不足,提出了异构无线网络可控匿名漫游认证协议,也提出了移动互联网下移动可信终端的可信漫游协议,运用CK安全模型证明了这些协议的安全性。.研究适用于网络拓扑重构的有限资源优化模型、算法,提升网络容量的有限资源配置算法以及适合于异构无线网络的漫游认证方案和漫游协议等内容,对于改进现有网络系统的设计、实现网络资源合理的配置、提升异构网络系统生存能力具有重要理论指导和现实意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
黄河流域水资源利用时空演变特征及驱动要素
面向云工作流安全的任务调度方法
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
网络可生存性研究
基于随机Petri网的网络可生存性模型与分析方法
基于复杂网络的Internet可生存性分析方法研究
存储网络系统的可生存性理论与关键技术研究