Tar species in gas, as the main bottleneck, has severely restricted the development and application of gasification technologies that can produce methane-rich syngas. It is crucial important to address the above issue through scientifically understanding the conversion principle of volatiles to methane-rich gas and regulatory mechanism of product compositions and distributions. As for the difficulty in deeply understanding the conversion mechanism of coal tar, the primary tar will first be separated into six groups, and then the catalytic cracking mechanisms of the groups and characteristics of their product compositions as well as the distributions will be revealed for deeply understanding the controlled-conversion mechanisms of the coal tar. In addition, the relationship between the properties of the tar groups and their catalytic cracking characteristics will be constructed. In view of the problem for the simultaneous conversion of tar and methane during cracking, a strategy that uses char/ash mixture as catalyst is proposed to crack the volatiles into the methane-rich gas in hydrogen atmosphere. Furthermore, the influence mechanism of char/ash ratio and reaction temperature on the extent between thermal cracking and catalytic cracking will be elucidated. Finally, the regulatory theory and method during thermal catalytic cracking of coal volatiles in hydrogen atmosphere will be proposed and the results of this project will provide important prop for the coal gasification technology that can produce methane-rich syngas.
燃气含焦油问题是制约富甲烷气化技术开发和应用的主要瓶颈。对煤热解挥发物热裂解转化为富甲烷燃气原理和产物组成分布调控机制的科学认识是解决上述问题的关键。本项目针对热解挥发物成分复杂而难以深入认识其反应历程的难题,将热解焦油分离为六种不同结构的亚族,从焦油的族学分配特点入手,通过揭示焦油亚族的催化热裂解反应历程和产物组成分布特性深入认识复杂焦油的控制转化机制,构建焦油亚族组成结构与临氢催化热裂解特性、产物组成分布之间的关系;针对焦油和甲烷容易同时裂解转化的问题,提出以半焦/灰渣混合物催化挥发物临氢控制转化为富甲烷燃气的方法,阐明半焦/灰渣混合比例和反应温度在调控挥发物热裂解和催化裂解两种类型反应程度中的作用机制,最终形成临氢气氛中煤热解挥发物催化热裂解生成富甲烷燃气的控制方法与理论,为发展燃气型煤分级热解气化技术奠定基础。
燃气型煤分级热解气化工艺借助流化床气化的独特优势可利用粉煤生产富含甲烷和高H2/CO比例的燃气,是煤制天燃气领域中最具替代潜力的气化工艺。煤热裂解过程如何最大程度生成并保留甲烷同时消除焦油成为工艺开发和运行的难点,以此为目标的有关焦油/甲烷生成和热裂解转化原理的探究以及相关工艺参数影响机制的揭示是工艺调控的基础。项目以煤炭热裂解过程最大化生成甲烷为核心研究目标,通过TG-FTIR、Py-GC/TOF-MS、固定床和流化床反应设备的耦合,深入研究了原煤热解过程、一次焦油化学族结构与组成、热裂解反应规律、半焦和灰渣的催化作用原理以及临氢气氛的影响机制。结合XPS、13C NMR、GC/MS和FT-ICR-MS等先进分析方法,深入认识了煤临氢热解挥发物中焦油亚族的分配特点、结构组成信息,构建了基于化学族的煤炭分子水平热裂解行为与机制研究模式,为从分子水平深入认识煤炭热裂解机制提供了切实可行的研究方法。通过研究原煤和一次焦油各化学族的催化热裂解转化过程,建立了焦油亚族结构组成与临氢催化热裂解反应历程、产物组成分布之间的关系。提出以半焦/灰渣混合物作为流化介质调控焦油裂解与甲烷生成新方法,研究了不同流化介质对热裂解反应产物的组成与分布的影响,阐明了半焦/灰渣作为流化介质时所遵循的部分正碳离子反应/自由基反应机制。通过反应温度、气氛、停留时间和催化剂多因素协同,实现了热裂解反应历程和反应深度的调控,不仅显著抑制了甲烷分解,还使焦油产率大大降低,气体中氢气和甲烷的产率大幅提升。此外,还揭示了临氢气氛在一次焦油化学族裂解过程的差异化作用原理,认识了氢气与焦油中不同化学结构的作用机制。项目执行期间,在国内外学术期刊发表论文10篇,其中SCI论文8篇(包括Fuel Processing Technology 1篇,Fuel 1篇,Catalysis Today 1篇,Energy Conversion and Management 1篇,Energy 3篇,New Journal of Chemistry 1篇 ),EI论文2篇(工程热物理学报和煤炭学报各1篇、)。申请专利9件,授权4件。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
煤/生物质流态化富氧燃烧的CO_2富集特性
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
铁酸锌的制备及光催化作用研究现状
夏季极端日温作用下无砟轨道板端上拱变形演化
富氢气氛煤热解与铁矿石还原耦合过程基础
煤催化加氢热解与合成气原位甲烷化耦合制富甲烷气的化学基础
西北高惰质组分煤热解制备富氢燃料气和热解油的研究
煤直接液化残渣催化甲烷裂解制备富氢气体研究