Organic-inorganic hybrid perovskite / titanium dioxide thin films have aroused wide concern and continuous researches due to high absorbance and long diffusion length of carriers of perovskite and considerable photocatalytic and superhydrophilic capability of TiO2. Photo-induced capabilities of TiO2 films rely on carrier concentration, which could be raised by curtailing the energy gap of TiO2. Another approach is to inhibit the recombination of hole-electron pairs generated by light. The first object could be achieved by introducing other ions into the TiO2 lattice, which would turn increasing recombination ratio into an unavoidable result. Magnetron co-sputtering enables us to take accurate control of doping content as well as the thickness of each layer, making it possible and convenient to implant several upward electric fields between crystallite interfaces of different layers. Such fields will act as carrier separation accelerators and speed up charge transfer. Moreover, negative effects of Schottky barrier above the metal substrate could be eliminate by controlling ion concentration and compressing the depletion layer in the order of angstrom scale, so as to further precipitate internal charge transfer. Higher carrier concentration is to be expected if a combinated introduction of perovskite could be realized. This program is aimed to find an approach to implant direction-modulated electric fields into perovskite / multilayer TiO2 films during a single In-situ vapor deposition to inhibit internal carrier recombination and enhance photocatalytic capability under visible light. Such researches are closely relevant to practical mass application and could propel the development of TiO2 films.
有机-无机混合钙钛矿具有优异的可见光吸收和长的载流子迁移距离,二氧化钛具有优良的光催化性能和超亲水性,因此钙钛矿/二氧化钛薄膜具有优异的光电、光催化性能而引起关注。二氧化钛薄膜的光致性能依赖于光生载流子浓度,改性方法一是增加光的吸收,二是抑制载流子复合。普通的掺杂改性方法是无法同时做到这两点的。本项目中通过多靶磁控共溅射制备多层掺杂二氧化钛薄膜结构,在沉积过程中实时调节各靶的溅射功率改变掺杂浓度,在各层薄膜晶粒间形成内电场,加速载流子分离,抑制载流子复合,提高光致性能。同时通过气相沉积钙钛矿来提高可见光的吸收,并利用隧穿效应消除高掺杂浓度层与基底的肖特基势垒影响。通过薄膜结构的优化,获得最佳的光致性能。本项目将促进气相沉积钙钛矿/二氧化钛薄膜的发展,利用原位沉积可以一次完成多层薄膜结构的制备,并可以与现有连续大面积薄膜工艺相衔接,应用前景良好。
二氧化钛具有优良的光催化性能和超亲水性,但由于其带隙较宽,只能吸收利用紫外光,因此需要拓展其光吸收范围,而甲胺铅碘钙钛矿材料具有吸收系数高、载流子迁移率高和扩散长度长等优异特性,将甲胺铅碘钙钛矿与TiO2相结合能显著提高TiO2光催化活性。然而甲胺铅碘是非常不稳定的材料,在有水汽或温度升高时会分解,导致其实际应用非常困难。.本项研究利用气相沉积法制备了掺杂二氧化钛/甲胺铅碘钙钛矿/掺杂二氧化钛的多层膜结构,利用甲胺铅碘钙钛矿吸收光产生大量载流子以及层间的内电场抑制载流子复合,提高了光致性能,并且克服了甲胺铅碘易分解的缺陷,具有稳定的光电性能。.本项研究主要结果:.1 研究了Mo:TiO2、N:TiO2薄膜、以及三种结构的Ag纳米粒子:TiO2薄膜的制备、结构与光催化性能的关系,获得了最佳参数。.2 利用磁控溅射加阳极氧化法成功制备了TiO2、Mo:TiO2、Si:TiO2纳米管,其中0.5%Mo掺杂的TiO2纳米管紫外可见光下光电流密度达到了2.4*10-4 A·cm2,是纯TiO2纳米管的4.1倍,。.3 完成了MAPbI3粉末的合成,获得了气相沉积MAPbI3薄膜的最佳工艺。利用气相沉积法制备了Mo:TiO2- CH3NH3PbI3钙钛矿-Mo:TiO2三层薄膜,带隙约1.45 eV,光吸收大大增强,紫外可见光下光电流密度达到了8.5*10-4 A·cm2,约是同厚度纯TiO2薄膜的14.3倍。可见光照射下,光电流密度达到了5.2*10-4 A·cm2,约是同厚度纯TiO2薄膜的19.2倍。光催化降解速率是纯TiO2薄膜的2.4倍。.4 利用气相沉积法制备了沟道型Mo:TiO2- CH3NH3PbI3钙钛矿-Mo:TiO2三层薄膜,带隙约1.45 eV,光吸收大大增强,紫外可见光下光电流密度达到了9.1*10-4 A·cm2,约是同厚度纯TiO2薄膜的15.3倍。.本项研究通过制备沟道型掺杂二氧化钛-甲胺铅碘钙钛矿-掺杂二氧化钛的多层薄膜,解决了纯二氧化钛薄膜带隙宽、可见光吸收弱和甲胺铅碘钙钛矿不稳定、易分解、难以实用这两个问题。光致特性有明显提升,相比同厚度纯二氧化钛薄膜光电流密度提高了一个数量级,光催化降解速率也有成倍增加。利用气相沉积法原位沉积可以一次完成多层薄膜结构的制备,可以与现有连续大面积薄膜工艺相衔接,具备了良好的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
锐钛矿相大孔掺氮二氧化钛薄膜的大气压等离子体化学气相沉积及其光催化活性研究
二阶段式化学气相沉积成长铜薄膜及其反应机理研究
强磁场对气相沉积制备薄膜材料的影响
二氧化钛纳晶薄膜电池的光散射和限光效应