Axonal regeneration is critical for neural repair after hypoxic-ischemic encephalopathy. Recent research has found that glycogen synthase kinase-3β (GSK-3β) inactivation by phosphorylation could promote formation of new axons in neuronal development. In previous study,we have found that GSK-3βactivation via dephosphorylation could mediate axonal injury after hypoxia-ischemia. However, in neonatal animal after cerebral hypoxia-ischemia, it is unclear whether the phosphorylation of GSK-3β could regulate protein synthesis associated with axonal regeneration? Which proteins are involved in signal transduction of GSK-3β? Could inhibition of GSK-3β promote axonal regeneration? Could axonal regeneration mediated by GSK-3β inhibit neuron death? In this project, we will establish a hypoxic-ischemic brain injury model in neonatal rat and an oxygen-glucose deprivation model in neurons. With these models, we will explore the mechanism of GSK-3β pathway in axonal regeneration and neural death, using knockout or over-expression of GSK-3β. Our studies will provide new cues in the therapeutic strategies for neonates with hypoxic-ischemic encephalopathy.
轴突再生对新生儿缺氧缺血性脑病神经损伤后的修复具有重要意义。近年研究发现,在神经元发育中,糖原合成酶激酶-3β(glycogen synthase kinase-3β, GSK-3β)磷酸化后失活,可促进新生轴突形成。在前期研究中,我们发现GSK-3β在缺氧缺血后发生去磷酸化而激活,加重神经元轴突损伤。但是,在新生动物脑缺氧缺血后,GSK-3β磷酸化能否调控下游轴突再生相关蛋白的合成?参与GSK-3β信号转导的重要蛋白是什么?抑制GSK-3β可否促进轴突再生?GSK-3β介导的轴突再生可否抑制神经元死亡?目前尚未明确。本课题拟在体内新生鼠缺氧缺血模型和体外神经元氧糖剥夺模型中,应用GSK-3β敲除或高表达方法,探讨GSK-3β信号通路对神经元轴突再生及神经元死亡的调控机制,为新生儿缺氧缺血性脑病的治疗提供新思路。
新生儿缺氧缺血性脑病(Hypoxic-ischemic encephalopathy, HIE)是足月儿残疾的主要原因之一,25%患儿遗留包括脑瘫,认知功能障碍,听力缺失等在内的永久性神经后遗症。迄今为止,HIE治疗仅局限于对症支持,缺少特异性治疗手段。轴突损伤不仅是多种神经系统疾病的特征性事件,而且是多种神经损伤的共同结局。脑缺氧缺血可抑制神经元轴突的生长、分化,破坏神经网络的形成,是引起HIE神经系统后遗症的重要原因之一。在发育期缺氧缺血脑损伤时,轴突损伤后再生的信号调控机制,目前尚未完全清楚,是本课题需要探讨的重要内容。. 轴突内源性再生能力不足对于轴突再生具有深远的影响。轴突再生需要神经元内蛋白合成和微管重组以重建轴突细胞骨架,延长轴突。我们设想,新生动物在缺氧缺血应激时,脑组织内糖原合成酶激酶-3β(GSK-3β)活性增强,可抑制mTOR活性,下调效应蛋白p70S6K活性,最终引起轴突再生困难,诱导神经元死亡。我们推测,抑制GSK-3β可诱导下游 mTOR/p70S6K/Tau信号通路活化,是缺氧缺血性脑损伤后轴突再生的重要机制之一。.我们经过实验已证实,缺氧缺血应激时GSK-3β活性异常增加,可抑制mTOR活性,引起mTOR下游效应蛋白,包括p70S6K、S6、4E-BP1等活性下降,轴突相关蛋白Tau蛋白表达下降,轴突密度下降,轴突损伤标志物APP表达增加。使用GSK-3β化学抑制剂LiCl和合成的GSK-3β-siRNA,可增加mTOR及其下游蛋白活性,增加轴突密度,抑制轴突损伤标志物APP表达。. 此外,鉴于新近文献报道,mTOR活性与突触功能紧密相关,我们探索GSK-3β/mTOR与突触功能关系研究。我们实验发现,突触前标志物 synapsin 1 和突触后标志物PSD-95、GluR1均在缺氧缺血后表达下降;通过抑制GSK-3β,可激活mTOR,导致下游突触前标志物 synapsin 1 和突触后标志物PSD-95、GluR1表达增加,改善新生大鼠记忆功能,减轻缺氧缺血后脑组织损伤。. 我们的研究阐明了GSK-3β/mTOR信号通路对神经元轴突再生和突触功能的调控作用,为新生儿HIE的治疗提供新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
糖原合成酶激酶3β/缺氧诱导因子2α在肝脏缺血再灌注损伤中的作用机制
糖原合成酶激酶3β信号通路在甲基苯丙胺成瘾中的作用及其机制研究
核转录因子FOXO3a信号通路调控缺氧缺血神经元凋亡的机制
过氧亚硝基调节脑缺氧缺血后神经再生及其信号通路的研究