Algebriac-geometric codes are very important in the theory of error-correcting codes because of its theretical and potential application value. We studied the error-correcting capability and deconding of algebraic-geometric codes in this project, including the following topics: improvement of error-correcting capability of Hermitian codes, the minimum distances of Schubert codes and the application of algebraic-geometric codes in the construction of quantum error-correcting codes. We constructed a sequence of asymptotically good quantum error-correcting codes and improved the ALT bound.
本课题研究代数几何码已有的译码法,尤其是冯拉欧译码法,对具好的性质的代数几何码,如欧梅特码,嘎西--斯梯奇努兹曲线上的渐进好码的译码能力,如译码法的纠错个数的严格确定,对超冯拉欧界的错型的处理能力等,也寻找对好码的更有效,可处理更多错误的译码法,本课题对具潜在应用价值的代数几何码的可能技术应用有意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
肉苁蓉种子质量评价及药材初加工研究
代数几何码的改进列表译码
基于代数几何的译码算法
代数几何码的构造和高速译码及其应用
算术代数几何在经典码的构造及列表译码中的应用