共形曲面的谱簇的渐近分析

基本信息
批准号:11126131
项目类别:数学天元基金项目
资助金额:3.00
负责人:沈玉萍
学科分类:
依托单位:南京理工大学
批准年份:2011
结题年份:2012
起止时间:2012-01-01 - 2012-12-31
项目状态: 已结题
项目参与者:
关键词:
谱簇共形曲面渐进分析。Quillen行列式线丛
结项摘要

本课题准备研究亏格大于或等于1的4维球面中的共形浸入曲面的谱簇,将4维球面中共形浸入曲面等价为曲面上的一个四元全纯线丛,与其四元全纯结构相关的带有位势的狄拉克型算子族的Quillen行列式线丛平凡化可以得到曲面单值空间上一个全纯的行列式函数。这个行列式函数在单值空间内定义的解析子簇将被证明为曲面共形浸入的特征谱簇。我们将描述位势不为零的狄拉克型算子的谱簇,试图证明它在单值趋近于无穷大时,渐近到位势为零对应的真空谱。特别的,当曲面是亏格为1的环面且其共形浸入的谱簇是亏格有限的黎曼曲面时,拟利用代数几何的技巧构造出原来的浸入映射。这将为证明著名的关于环面的Willmore猜想提供新的思路和可能性。

项目摘要

本项目主要研究亏格大于或等于1的紧黎曼曲面到4维球面中的共形浸入的谱簇。我们将4维球面中共形浸入曲面等价为曲面上的一个四元全纯线丛,引入与其四元全纯结构相关的带有位势的Dirac型算子族。然后将此算子族的Quillen行列式线丛的平凡化得到了曲面单值空间上一个全纯的行列式函数,这个行列式函数的零点在单值空间内定义的解析子簇被证明恰为曲面共形浸入的特征谱簇。对于亏格为1的环面情形,我们明确了位势为零的Dirac型算子对应的真空谱的形状,并且完成了位势不为零的Dirac型算子对应的一般谱的精确的渐近分析。对于亏格大于1的紧黎曼曲面的共形浸入的谱簇,我们只给出了定性的分析。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于LS-SVM香梨可溶性糖的近红外光谱快速检测

基于LS-SVM香梨可溶性糖的近红外光谱快速检测

DOI:
发表时间:
2

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

DOI:10.11842/wst.20190724002
发表时间:2020
3

超声无线输能通道的PSPICE等效电路研究

超声无线输能通道的PSPICE等效电路研究

DOI:10.3969/j.issn.0372-2112.2018.08.012
发表时间:2018
4

高分五号卫星多角度偏振相机最优化估计反演:角度依赖与后验误差分析

高分五号卫星多角度偏振相机最优化估计反演:角度依赖与后验误差分析

DOI:10.7498/aps.68.20181682
发表时间:2019
5

铁路大跨度简支钢桁梁桥车-桥耦合振动研究

铁路大跨度简支钢桁梁桥车-桥耦合振动研究

DOI:10.3969/j.issn.1000-0844.2017.05.0820
发表时间:2017

沈玉萍的其他基金

相似国自然基金

1

渐近实/复双曲爱因斯坦流形及共形/CR几何相关问题

批准号:11871331
批准年份:2018
负责人:王芳
学科分类:A0109
资助金额:53.00
项目类别:面上项目
2

分形鼓的谱渐近理论

批准号:19301032
批准年份:1993
负责人:陈化
学科分类:A0306
资助金额:2.00
项目类别:青年科学基金项目
3

拟共形映射与双曲型度量

批准号:11071069
批准年份:2010
负责人:褚玉明
学科分类:A0201
资助金额:33.00
项目类别:面上项目
4

极值拟共形映射与渐近Teichmuller空间相关问题

批准号:11326084
批准年份:2013
负责人:张思汇
学科分类:A0201
资助金额:3.00
项目类别:数学天元基金项目