算子方法在相关Bernoulli多项式函数方面的应用

基本信息
批准号:11226281
项目类别:数学天元基金项目
资助金额:3.00
负责人:鲁大前
学科分类:
依托单位:扬州大学
批准年份:2012
结题年份:2013
起止时间:2013-01-01 - 2013-12-31
项目状态: 已结题
项目参与者:焦荣政,杨清
关键词:
拟单项Bernoulli算子方法生成函数Apostol型多项式多项式
结项摘要

Special functions are heavily used in Physics, Engineering, computing methods and so on. The commonly used tool of studying special functions is the analytic function theory. Euler, Laplace and many other mathematics have done important works in this area. From the operational point of view, we will investigate the related Bernoulli polynomial functions. Using the operational method, we will study the properties of the generalized Apostol type polynomials, including the recurrence relation and the differential equation and so on, from which we not only can obtain the corresponding properties of the Apostol-Bernoulli polynomials, Apostol-Euler polynomials and Apostol-Genocchi polynomials, but also can establish the relationships of them. And we also study its q-generalization and its properties. Using the operational method and umbral calculus, we will generalize the 2-dimentional Bernoulli polynomials to the multi-dimentional Bernoulli polynomials and pseudo-Bernoulli polynomials, and study their properties which can also establish the relationships between preudo-Bernoulli polynomials and preudo-Euler polynomials. The operational method is more direct and simple than the traditional ways on studying the classical special functions .

特殊函数在物理学、工程技术、计算方法等方面都有广泛的应用。研究特殊函数常用的工具是解析函数理论,Euler 和Laplace等数学家都在这方面做过奠基性的工作。我们将从一个新的角度用算子方法来研究特殊函数中的相关Bernoulli多项式函数。利用算子方法研究一般的Apostol型多项式的递推关系和满足的微分方程等性质,不仅可以得到其包含的Apostol-Bernoulli多项式、Apostol-Euler多项式和Apostol-Genocchi的对应的性质,还可以建立它们之间的关系等式,此外还研究了它的q-推广的形式及其性质。利用算子方法和哑运算的技巧把2维Bernoulli多项式推广到多维Bernoulli多项式和伪Bernoulli多项式,并研究它们的一些性质,还利用其算子表示式建立和伪Hermite多项式之间的关系。利用算子方法来研究经典特殊函数理论比用传统的方法更直接更简便。

项目摘要

我们从一个新的角度用算子方法来研究特殊函数中的相关Bernoulli 多项式函数。利用算子方法和哑运算的技巧研究了一般的Apostol 型多项式的递推关系和满足的微分方程等性质,不仅得到了其包含的Apostol-Bernoulli 多项式、Apostol-Euler 多项式和Apostol-Genocchi 的对应的性质,还建立了它们之间的关系等式。还把2 个变量的Bernoulli 多项式推广到了更一般地Bernoulli 多项式,并研究了它们的一些性质。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
2

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
3

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
4

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
5

气载放射性碘采样测量方法研究进展

气载放射性碘采样测量方法研究进展

DOI:
发表时间:2020

鲁大前的其他基金

相似国自然基金

1

与算子相关的函数空间及其应用

批准号:11001002
批准年份:2010
负责人:黄际政
学科分类:A0205
资助金额:16.00
项目类别:青年科学基金项目
2

与Hardy算子相关的权函数的特征及其应用

批准号:11201287
批准年份:2012
负责人:赵发友
学科分类:A0205
资助金额:22.00
项目类别:青年科学基金项目
3

与薛定谔算子相关的加权函数空间及其应用

批准号:11426038
批准年份:2014
负责人:朱华
学科分类:A0205
资助金额:3.00
项目类别:数学天元基金项目
4

相关于微分算子的函数空间和算子问题

批准号:11371057
批准年份:2013
负责人:丁勇
学科分类:A0205
资助金额:50.00
项目类别:面上项目