The performance of flame retarding of silicone foam material proves to be an obstacle for its popularization and application. The physical characteristics of materials are worsened via the traditional methods of adding the flame retardants, the poisonous and harmful productions are released at the period of high-temperature or combustion. Therefore, the idea of flame retarding synergistically for the materials of silicone foam and thermosensitive microcapsules is firstly proposed. In this project, the key scientific problems are the mechanisms of released and controlled, and flame retarding of the core material in the microcapsules in the material of silicone foam. The detailed contents are as follows: (1) We produce the microcapsules with the performance of thermosensitive switch, establish the model of released and controlled for reaching the flame retarding of coordinated working with multiple core materials.(2) We capture the preparation method of the material of microcapsules silicone foam by study on the compatibility between the wall materials of microcapsule and the material of silicone foam, and the characteristics of targeted distribution for the wall material in the silicone foam. (3) We deduce the migration path of the core material and the kinetic mechanism of flame retarding as multiple scale for different materials of microcapsules silicone foam, to achieve the relationship between parameters (type of core material, microcapsule size, operating temperature of microcapsule, microcapsule numbers, cell structure, foam density, etc.) and the capabilities of flame retarding for the material of silicone foam. (4) A rapid detection method for the properties of flame retarding for the material of microcapsule silicone foam is established, and the optimized model is proposed to improve its performances of flame retarding. The results are vital worth in academic and engineering, which would benefit for the application and development of the material of silicone foam as flame retarding.
硅胶泡沫材料阻燃性能是制约其推广应用的瓶颈,传统的阻燃剂添加法会引起材料物理性能恶化、高温或燃烧时产生有毒有害物质,为此,开拓性提出温敏微胶囊协同阻燃思路。本项目主要针对微胶囊硅胶泡沫材料中微胶囊芯材的释控及其阻燃灭火机理等关键科学问题,开展如下研究:①研究制备具有温敏开关功能的微胶囊,建立其释控模型,揭示多类阻燃芯材微胶囊协同释控运行机制;②研究微胶囊壁材与硅胶泡沫材料的相容性及其在硅胶泡沫材料中的靶向分布特征,获得微胶囊靶向分布于硅胶泡沫材料的制备方法;③研究不同微胶囊硅胶泡沫材料的芯材迁移路径和多尺度阻燃灭火动力学机理,得到芯材类型、微胶囊尺寸、微胶囊动作温度、微胶囊数量、泡孔结构、泡沫密度等参数与硅胶泡沫材料阻燃性能的关系;④提出微胶囊硅胶泡沫材料阻燃性能快速检测方法,建立其性能优化模型,提高其阻燃性能。研究结果有利于推动阻燃硅胶泡沫的发展和应用,具有重要学术和工程应用价值。
传统提高硅橡胶泡沫(SiFs)材料阻燃抑烟的方法存在阻燃效率低、与硅橡胶基体相容性差、热解或燃烧后炭层松散等问题,制约其阻燃抑烟性能的提升。项目深入研究了微胶囊阻燃抑烟剂对SiFs材料性能的影响,揭示了微胶囊阻燃抑烟剂SiFs材料的阻燃抑烟机理。主要研究成果如下:优选出氢氧化铝(ATH)、锌镁铝类水滑石(LDHs)、甲基膦酸二甲酯(DMMP)和次磷酸铝(AHP)四种能较好提升SiFs材料阻燃抑烟性能的阻燃剂。采用溶胶凝胶法制备出微胶囊化ATH(MATH)和改性微胶囊化LDHs(MLDHs);利用微流体技术制备出微胶囊化DMMP(MDMMP);采用乳化法制备出微胶囊化AHP(MAHP)。四种复合阻燃剂均能在不降低SiFs材料力学性能同时,有效提高其阻燃抑烟性能。MATH/CC对SiFs材料的力学性能改善效果最为明显,其次是MAHP/改性MLDHs和改性MLDHs。分析了含微胶囊阻燃抑烟剂SiFs材料的热氧分解过程、热降解挥发产物、炭渣结构和炭渣成分。结合材料的燃烧和分解性能,分析了MATH/CC、改性MLDHs、MDMMP/MATH和MAHP/改性MLDHs在SiFs材料凝聚相和气相阻燃抑烟中所起的作用,揭示了协同阻燃抑烟机理。四种复合阻燃剂中,MAHP/改性MLDHs添加量最少,但其热释放量(THR)和火灾增长指数(FGI)最小,火灾安全性能最优。研究结果对提高SiFs材料的火安全性能具有重要的意义。.在国内外学术期刊共发表学术论文21篇,第一资助18篇,第二资助3篇。其中,SCI检索9篇,EI检索6篇,中文核心6篇。授权发明专利5件,受理发明专利5件,培养学术骨干3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
近水平层状坝基岩体渗透结构及其工程意义
电沉积增材制造微镍柱的工艺研究
一步法制备生物相容油核微胶囊及其可控释放
硅泡沫的超弹压缩和应力松弛的不确定性表征
高性能本体磷-氮膨胀型阻燃硬质聚氨酯泡沫的制备及阻燃机理研究
膨胀型多元醇阻燃硬质聚氨酯泡沫性能及机理研究
高导热可膨胀石墨微胶囊的制备及阻燃天然橡胶机理
有机无机杂化微胶囊化膨胀型阻燃剂的制备及其阻燃交联聚烯烃材料的性能与机理研究