The research about 2-(v,k,1) designs and their automorphism groups is an important problem between groups and combinatorial designs. In this project, we will study the actions of finite permutation groups on 2-(v,k,1) designs, and then investigate the existence and classification of 2-(v,k,1) designs. Concretely, the following problems will be concerned..On the one hand, research the finite classical groups of dimension at most 24, and then classify the 2-(v,k,1) designs whose automorphism groups are n-dimensional finite simple classical groups and line-transitive, here n is no more than 24;.On the other hand, research the finite primitive permutation groups of square-free degree, and then classify the 2-(v,k,1) designs admitting.line-transitive point-imprimitive automorphism groups and with number of points being square-free..Our research is based on the theory of finite groups and the aim is to classify the 2-(v,k,1) designs.
对2-(v,k,1)设计及其自同构群的研究已经成为群与设计的一个重要课题。本项目通过研究有限置换群在2-(v,k,1)设计上的作用来讨论2-(v,k,1)设计的存在与分类问题。具体的,我们将研究以下两方面的内容:.(一)研究维数不超过24的有限典型群,分类自同构群是n-维有限典型单群(n≤24)的线传递2-(v,k,1)设计;.(二)研究次数无平方素因子的有限本原群,分类点数无平方素因子的线传递点非本原的2-(v,k,1)设计。.本项目是以有限群理论为基础,以分类2-(v,k,1)设计为目的的研究。
有限置换群的研究促进着2-(v,k,1)设计的研究进程。本项目致力于2-(v,k,1)设计及其自同构群的研究。在对维数不超过24的有限典型群和次数无平方素因子本原群的研究过程中,我们分类了点数为两个素数乘积的点本原2-(v,k,1)设计和点数为两个素数乘积的线传递点非本原的2-(v,k,1)设计,为后续研究奠定了坚实的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
带有滑动摩擦摆支座的500 kV变压器地震响应
基于腔内级联变频的0.63μm波段多波长激光器
基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例
二维FM系统的同时故障检测与控制
点传递 2-(v,k,1)设计
有限2-测地线传递图的研究
代数K—理论与典型群
代数K-理论与典型群