结构最优化问题的进一步研究

基本信息
批准号:19971088
项目类别:面上项目
资助金额:7.50
负责人:陈丽华
学科分类:
依托单位:中国科学院数学与系统科学研究院
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:袁文燕,白立蕙,范玉妹,寥福成
关键词:
结构最优化问题结构拟牛顿算法
结项摘要

The project focused on the further studies about the unconstrained.structured optimization problems, especially about the least squares problems with zero residual or non-zero residual and Unary optimization problems. We proposed some promising algorithms and analyses their convergent properties for the different.versions in the studies. First of all, aiming at the special structure of the least squares problems, which form a primary and typical examples of structured optimization, we first develop a nonmonotone trust region algorithms for least squares problems with zero residual.This algorithm allows the sequence of objective function values to be nonmonotone.which accelerates the iterating progress, especially in the case where the objective function is ill-conditioned. Some global and local convergence properties of the proposed algorithms are proved under mild conditions. For the least squares.problems with non-zero residual, we proposed a modified truncated Newton method with secant proconditioners which has been proved to be globally convergent and quadratically or superlinearly locally convergent under mild conditions. A set of numerical results is reported for the proposed algorithms, respectively, which shows.that the presented algorithms are promising and superior to the corresponding compared algorithms according to the numbers of gradient and function evaluations. The software packages (Fortran code) are ready for the further researches. Another typical structured optimization problem, unary optimization problem, has also been considered in the project. Based on our discussion on the two replacement criteria proposed by Goldfarb and Wang and preconditioned conjugate gradient method, we proposed two sets of modified replacement criteria which.overcame the poor local convergence which Goldfarb and Wang’s algorithms.achieved based on their replacement criteria. Based on the two classes of modified replacement criteria, we presented two classes of modified truncated Newton-like algorithms with secant preconditioners for solving unconstrained unary optimization.problems. The algorithms proposed only partially updated an approximation to the Hessian matrix in each iteration by utilizing limited times of rank-one updating of the Choleschy factorization. In contrast with the Goldfarb and Wang’s original algorithms, the algorithms not only converge globally, but also possess a locally quadratic or superlinear convergence rate. Furthermore, our numerical experiments show that the.new algorithms outperform Goldfarb and Wang’s algorithms. The software packages (Fortran code) are ready for the further researches. For the general unconstrained structured optimization problems, we first tried to.generalize the research results about the above two typical examples: least squares problems and unary optimization problems to the general case. Then we introduced the secant preconditioner strategy to propose an modified structured secant Newton-like method to improve the efficient of the structured secant algorithms proposed by H. J. Martinez et al Based on our proposed new secant Newton equations and new secant Newton update formula.

结构最优化问题的研究具有重要的理论价值,同时有广泛的应用背景。很多重要的实际问题都可以归结为结构最优化问题,因此对此方向的研究越来越的到国内专家学者的关注。我们拟对起进行进一步的研究。设计一些更有效的结构,拟牛顿算法及其软件,分析其收敛性。推动一般结构最优化理论的进一步发展。...

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

演化经济地理学视角下的产业结构演替与分叉研究评述

演化经济地理学视角下的产业结构演替与分叉研究评述

DOI:10.15957/j.cnki.jjdl.2016.12.031
发表时间:2016
2

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
3

物联网中区块链技术的应用与挑战

物联网中区块链技术的应用与挑战

DOI:10.3969/j.issn.0255-8297.2020.01.002
发表时间:2020
4

圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察

圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察

DOI:10.3969/j.issn.1674-0858.2020.04.30
发表时间:2020
5

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019

陈丽华的其他基金

批准号:81060346
批准年份:2010
资助金额:25.00
项目类别:地区科学基金项目
批准号:21301133
批准年份:2013
资助金额:25.00
项目类别:青年科学基金项目
批准号:10872009
批准年份:2008
资助金额:48.00
项目类别:面上项目
批准号:51778202
批准年份:2017
资助金额:61.00
项目类别:面上项目
批准号:91442108
批准年份:2014
资助金额:90.00
项目类别:重大研究计划
批准号:11172011
批准年份:2011
资助金额:72.00
项目类别:面上项目
批准号:30571531
批准年份:2005
资助金额:30.00
项目类别:面上项目
批准号:81760717
批准年份:2017
资助金额:34.00
项目类别:地区科学基金项目
批准号:30872067
批准年份:2008
资助金额:28.00
项目类别:面上项目
批准号:81571531
批准年份:2015
资助金额:50.00
项目类别:面上项目
批准号:71673011
批准年份:2016
资助金额:50.00
项目类别:面上项目
批准号:11472019
批准年份:2014
资助金额:95.00
项目类别:面上项目
批准号:81460606
批准年份:2014
资助金额:47.00
项目类别:地区科学基金项目
批准号:30972683
批准年份:2009
资助金额:32.00
项目类别:面上项目
批准号:30570268
批准年份:2005
资助金额:24.00
项目类别:面上项目
批准号:81803307
批准年份:2018
资助金额:21.00
项目类别:青年科学基金项目
批准号:21671155
批准年份:2016
资助金额:62.00
项目类别:面上项目
批准号:30270718
批准年份:2002
资助金额:7.00
项目类别:面上项目
批准号:31070794
批准年份:2010
资助金额:30.00
项目类别:面上项目
批准号:41361070
批准年份:2013
资助金额:47.00
项目类别:地区科学基金项目

相似国自然基金

1

利用不同地理位置的地震台网记录的内核震相进一步约束地球最内核的结构和物性

批准号:41504071
批准年份:2015
负责人:陈佳维
学科分类:D0407
资助金额:20.00
项目类别:青年科学基金项目
2

求解大规模优化问题的非线性共轭梯度法的进一步研究

批准号:10701018
批准年份:2007
负责人:张丽
学科分类:A0405
资助金额:18.00
项目类别:青年科学基金项目
3

非线性动力系统的最简正规形及其相关问题的研究

批准号:11471027
批准年份:2014
负责人:任志华
学科分类:A0301
资助金额:60.00
项目类别:面上项目
4

流体力学方程非线性问题的最值算子解方法

批准号:10572015
批准年份:2005
负责人:董海涛
学科分类:A0910
资助金额:9.00
项目类别:面上项目