Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations, which now has been developed into a rich and profound direction: minimal submanifolds. The research on minimal submanifolds not only promotes the development of geometry and partial differential equations, but also is a powerful tool in studying the problems arisen from topology, relativity, materials science and so on. Singularities of minimal submanifolds are difficulty to understand, but often key points in the questions. It happens too frequently to avoid, for example, in the limits of sequences of smooth minimal submanifolds. In this project, the applicant is interested in studying the structure of singularities of minimal submanifolds under certain conditions, and how to eliminate possible singularities in some circumstances for getting regularity theorem. Minimal (hyper)surfaces play an important role in the study of smooth manifolds of nonnegative Ricci curvature or nonnegative scalar curvature. The applicant will study the properties of minimal hypersurfaces in smooth manifolds of nonnegative Ricci curvature without the assumption on sectional curvature. Combined with ideas from Gromov-Hausdorff approximation, the applicant will study minimal graphs over manifolds of nonnegative Ricci curvature. Moreover, the applicant will use ideas and techniques from minimal submanifolds to study capillary surfaces and constant mean curvature surfaces through a thorough understanding of their own structures.
极小曲面可以追溯到欧拉、拉格朗日,以及变分法的起源,现已发展成一个内容丰富而深刻的方向:极小子流形。它的研究不仅推动了几何、偏微分方程的发展,而且是研究拓扑、相对论、材料科学等领域中问题的强有力工具。极小子流形的奇点往往是研究中的难点、关键点,它常常很难避免,比如出现在一列光滑极小子流形的极限中。本项目中,申请人拟研究一定条件下极小子流形的奇点结构,以及在实际问题中如何排除掉可能的奇点,进而得到正则性定理。极小(超)曲面在研究具有非负Ricci曲率或者数量曲率的流形中发挥了不可估量的作用。申请人拟研究在没有截面曲率假设下的非负Ricci曲率流形中极小超曲面的性质,并结合Gromov-Hausdorff逼近的想法来研究非负Ricci曲率流形上极小图的性质。此外,对Capillary曲面、常平均曲率曲面,申请人将运用极小子流形的思想和技巧,通过透彻了解这类方程的自身结构来研究它们的性质。
极小曲面可以追溯到欧拉、拉格朗日,以及变分法的起源,现已发展成一个内容丰富而深刻的方向:极小子流形。它的研究不仅推动了几何、偏微分方程的发展,而且是研究拓扑、相对论、材料科学等领域中问题的强有力工具。极小子流形的奇点往往是研究中的难点、关键点,它常常很难避免,比如出现在一列光滑极小子流形的极限中。本项目中,申请人研究了特定的几何条件下极小子流形的奇点结构,以及在实际问题中如何排除掉可能的奇点,进而得到正则性定理。极小(超)曲面在研究具有非负Ricci曲率或者非负数量曲率的流形中发挥了不可估量的作用。申请人研究了在没有截面曲率假设下的非负Ricci曲率流形中极小超曲面的性质,并结合Gromov-Hausdorff逼近的想法研究了非负Ricci曲率流形上极小图的性质。此外,申请人运用极小子流形的思想和技巧,通过透彻了解拉格朗日子流形的结构,研究了特殊拉格朗日方程的性质。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
Strong inequalities for the iterated Boolean sums of Bernstein operators
关于1-Laplace型方程与平均曲率型方程的研究
平均曲率流相关问题研究
Hermitian对称空间中子流形的平均曲率流
一维平均曲率方程定性问题研究