Through-Silicon Vias (TSV) used for vertical interconnection in the heterogeneous integrated systems is a new paradigm (named 3-D integration), which is identified as a potential solution towards high performance and miniaturized micro-nano-electronics systems including radio frequency electronics and sensor integration. In the past years, 3-D integration technology has been dramatically developed particular in manufacturing process. However, successful commercial applications of 3-D integration technology still faces various challenge problems such as electrical signal and power integrity, thermal and mechanical integrity, and new architectural solutions enabled by the TSVs apart from manufacturability and cost. To be in line with the current industrial trends in IC design and to boost the semiconductor technology know-how . The related simulation, design aspects for 3-D ICs need to be very well understood. This project will mainly focus on the research of electrical and thermal property, signal and power integrity of the 3D IC integration, and will develop the integrated simulation capabilities for electrical and thermal modeling as well as signal and power integrity(SI-PI) co-simulation and design methodology. We are also going to find the design methods which are signal integrity(SI) ,power integrity(PI) & electromagnetic interference (EMI )compatible, to realize SI, PI & EMI co-design. The research will be supported by the experimental work. We believe that the deliverables of the project, including proprietary core technologies, novel designs, and manpower training will contribute fundamentally to our national strategic development in the 3D integrated circuits in specific and micro-nano-electronic industries in general.
先进三维集成系统级封装将是微纳电子包括射频电子、传感器等集成封装领域中长期持续发展的关键性前沿技术,但其系统级设计仍面临着技术挑战和难题。本项目拟基于模拟和实验手段,从三维集成电路系统级封装的电热耦合多尺度时域精细建模研究着手,重点研究复杂封装系统内多源电热耦合效应及对高速率信号影响,以及热应力对器件电性能的影响机理;发展高速信号完整性与电源完整性协同设计方法,开展基于硅通孔的三维系统级封装电热特性和信号完整性试验研究;进而研究实用新颖的降噪结构,提高高速率信号传输质量和电源网络优化布局、降低功耗,实现系统级封装的低功耗、小型化的目标。本项目将为高速三维集成电路系统级封装提供坚实的理论基础及分析设计方法,为推进新型微纳电子器件的产业化和实用化提供关键技术支撑,培养该领域的专业人才,具有非常重要的学术意义和广泛的工业应用前景。
随着半导体工艺节点减小到几个纳米,想要进一步减小晶体管特征尺寸越来越困难。三维集成封装作为一种有潜力的替代方案,正得到越来越多的应用。另一方面,多尺度、高密度集成这一特点带来了三维集成电路中复杂的电热环境,带来了信号传输质量恶化,电磁干扰等问题。本项目针对三维集成系统级封装中的电热问题与高速信号传输特性进行了全面而深入的研究,主要研究内容和重要成果如下:.(1).开发了三维集成封装多尺度时域电热耦合分析方法。重要成果包括获得了电热耦合场景下半导体中载流子分布规律,建立了硅通孔阵列的三维热传递网络模型,实现了封装-互连-载流子的多尺度瞬态电热耦合分析,并进行了电热协同优化设计。其科学意义在于阐明了三维集成封装内多尺度电热耦合机理,为实现多尺度耦合仿真提供了精细的模型和完善的分析方法,为实现电热协同优化设计提供了理论依据。.(2).开发了三维集成电路信号完整性和电源完整性的建模和分析方法。重要成果包括提出了一种可分析电源传递网络中电源/地平面对电磁辐射的快速算法,设计了一种可抑制同步开关噪声并且具有宽阻带效果的电磁带隙结构。其科学意义在于为三维集成电路的信号完整性和电源完整性分析提供了新的方法,并为其结构优化提供了新的思路。.(3).研究了三维集成电路复杂电热环境对有源器件的影响。重要成果包括获得了有源器件在复杂电热环境下的工作可靠性的理论预测;应用机器学习方法和微流体制冷,改善器件工作环境;进一步设计了热电转换系统以实现能源的高效利用。其科学意义在于为预测三维集成电路的性能可靠性提供了理论依据,并为改善器件工作环境提供了新的思路和设计指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
系统级封装互连的信号完整性问题研究
高速集成电路系统级封装电磁-热-应力协同分析设计
面向超高速多通道光子集成传输模块的三维叠层封装技术研究
集成光子器件封装固结特性与调控机制