Gas-liquid discharge is a new and efficient sewage treatment technology. However, when it is applied to the degradation of more stable organic compounds such as antibiotics, the degradation efficiency and energy utilization rate still need to be improved, which limits its further application. This project proposes to use a nanosecond pulse power to drive gas-liquid discharge and combine it with a photocatalyst to produce a synergistic effect and to Achieve efficient degradation of antibiotics in water. The effect of the catalyst on the gas-liquid discharge of nanosecond pulse was obtained by studying the discharge characteristics under the condition of catalyst. Through studying the efficiency of antibiotics degradation via the synergistic effect of nanosecond pulsed gas-liquid discharge under different conditions, and combined with the characteristics of gas-liquid discharge and photocatalyst, the synergistic law of gas-liquid discharge and catalyst is clarified, and the key active particles and their main reaction pathways in the process of antibiotic degradation are obtained. Then the relationship between macroscopic parameters, concentration of main active particle and antibiotic degradation efficiency are established, so as to clarify the mechanism of antibiotic degradation by the synergistic of nanosecond pulse gas-liquid discharge and photocatalyst, and achieve effective regulation of antibiotic degradation in water. The results of the project can deepen the understanding of gas-liquid discharge and provide references for the development of high-efficiency treatment technology for difficult-to-degrade pollutants.
气液放电是一种新型高效的污水处理技术,但应用于抗生素等结构更加稳定的有机物降解时,降解效率和能量利用率仍需提高,限制了其进一步应用。本项目提出利用纳秒脉冲电源激励来提高活性粒子产生,并将其与光催化剂相结合以充分利用放电过程中光效应,产生协同效应,实现水中抗生素的高效降解。通过研究含催化剂条件下纳秒脉冲气液放电特性,获得催化剂对纳秒脉冲气液放电的影响规律。通过研究不同条件下纳秒脉冲气液放电协同催化降解抗生素效果和能量效率,结合相同条件下放电特性和催化剂的表征结果,明晰气液放电与催化剂的协同作用规律,获得抗生素降解过程中的关键活性粒子及其主要反应路径,并建立宏观参数、关键活性粒子浓度与抗生素降解效率的关联关系,从而明确纳秒脉冲气液放电协同催化降解抗生素机制,实现水中抗生素降解的有效调控。项目成果可以加深对气液放电的理解,为难降解污染物高效处理技术的开发提供参考。
抗生素污染已然成为水污染的重要来源,严重威胁着生态平衡和人类生命健康。针对水中抗生素高效降解的需求,本项目提出利用纳秒脉冲电源激励来提高活性粒子产生,并利用放电与光催化剂的协同效应来进一步提高处理效率,实现绿色高效降解。本项目在执行过程中重点解决了以下问题:光催化剂添加对纳秒脉冲气液放电特性的影响规律;纳秒脉冲气液放电协同光催化降解水中抗生素的影响因素及调控;气液放电协同光催化降解水中抗生素机制。主要研究结果如下:①明确了光催化剂添加对气液放电的电学特性、放电形貌、等离子体特性及溶液活性粒子的影响,实现了稳定的纳秒脉冲气液放电。② 利用纳秒脉冲气液放电协同光催化实现了水中抗生素的高效降解,并明确了电源参数、工作气体、抗生素初始浓度、溶液初始pH值等因素的放电协同催化降解过程的影响。③ 初步探究和讨论了纳秒脉冲气液放电协同降解过程中的液相活性粒子的动力学行为、活性粒子在降解过程中的贡献程度及气液放电与光催化剂的协同效应,揭示了气液放电协同催化降解水中抗生素的机制。项目实施过程中取得了较为丰富的研究成果,丰富了气液放电协同催化降解水中抗生素的数据,为难降解污染物高效处理技术及等离子体源设计和优化提供指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
胰岛素样生长因子-1通路中的IGFBP2基因及COL2A1基因的选择性剪接在大骨节病发病机制中的作用
水中纳秒脉冲电晕放电处理医药废水的研究
纳秒脉冲水中电晕放电基础物理化学特性的研究
双极性脉冲放电协同催化降解水中持久性有机污染物(POPs)
多相纳秒脉冲介质放电与光催化协同过程处理压舱水机理研究