大偏差与流体动力学极限

基本信息
批准号:19971025
项目类别:面上项目
资助金额:9.00
负责人:高付清
学科分类:
依托单位:湖北大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:张绍义,祝东进,万成高,让光林,杜娟,王清华
关键词:
流体动力学极限数学物理大偏差
结项摘要

The project involves large deviations and their applications, hydrodynamic limits.for particle systems, entropy nequalities and exponential decay of Boltzman-shannon entropy. We prove that the Cram閞 functional of a Markov process can be controlled by a function of an.integral functional by H鰈der inequality under Orlicz norm if the transition semigroup is uniformly integrable. A large deviation principle for Markov processes is obtained under non-essential.irreducibility. We also extend the notation of F-Sobolev inequality to general Markov processes by replacing Dirichlet form with Donsker-Varadhan entropy and prove that the uniform integrability implies a F-Sobolev inequality. A deviation inequality under H鰈der norm for stochastic integral is obtained by GRR inequality. Large deviations under H鰈der norm and large deviations on capacity for stochastic flow are established. Moderate deviations for the maximum likelihood estimator and uniformly large deviations and uniformly moderate deviations for kernel density.estimators are obtained. Moderate deviation principle from hydrodynamic limit is first considered and the moderate deviation principle for exclusion processes is established. Entropy inequalities and exponential decay of Boltzmann-shannon entropy are researched. We give bounds on the.exponential decay rate of entropy in the random transposition model and Bernoulli-Laplace model which are independent of the number of sites and the number of particles. We obtain a proof of entropy inequality for Bernoulli measures by a Clark formula in discrete time and we also prove a bound that improves these inequalities of Bobkov and Ledoux. Limit theorems of some processesare considered.

研究无穷粒子系统的流体动力学极限及其大偏差,其意义在于通过微观模型导出宏观偏差分匠糖医馐推湎凳?扩散系数,或粘性系数)的物理意义;研究具有不连续统计小扰动问题的大?及随机过程.粒子系统的大偏差与中偏差;为研究动力系统.非线性偏差分方程.排队网络.非平衡统计力学等领域中的相关问题提供工具..

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

三级硅基填料的构筑及其对牙科复合树脂性能的影响

三级硅基填料的构筑及其对牙科复合树脂性能的影响

DOI:10.11951/j.issn.1005-0299.20200093
发表时间:2020
2

SRHSC 梁主要设计参数损伤敏感度分析

SRHSC 梁主要设计参数损伤敏感度分析

DOI:
发表时间:2014
3

基于极化码的无协商密钥物理层安全传输方案

基于极化码的无协商密钥物理层安全传输方案

DOI:10.11999/jeit190948
发表时间:2020
4

考虑故障处理过程信息系统连通性和准确性的配电网可靠性评估

考虑故障处理过程信息系统连通性和准确性的配电网可靠性评估

DOI:10.13335/j.1000-3673.pst.2018.1478
发表时间:2020
5

基于人工神经网络的模糊宗地地价评估模型研究

基于人工神经网络的模糊宗地地价评估模型研究

DOI:
发表时间:2020

高付清的其他基金

批准号:10271091
批准年份:2002
资助金额:11.00
项目类别:面上项目
批准号:11171262
批准年份:2011
资助金额:48.00
项目类别:面上项目
批准号:10571139
批准年份:2005
资助金额:16.00
项目类别:面上项目
批准号:11571262
批准年份:2015
资助金额:50.00
项目类别:面上项目
批准号:10871153
批准年份:2008
资助金额:25.00
项目类别:面上项目

相似国自然基金

1

大偏差理论、随机过程的极限理论及相关课题

批准号:10071058
批准年份:2000
负责人:胡亦钧
学科分类:A0211
资助金额:16.00
项目类别:面上项目
2

精细大偏差、概率极限理论及其在保险数学中的应用研究

批准号:10671149
批准年份:2006
负责人:胡亦钧
学科分类:A0211
资助金额:21.00
项目类别:面上项目
3

Boltzmann型方程的流体动力学极限问题的研究

批准号:11801285
批准年份:2018
负责人:樊迎哲
学科分类:A0306
资助金额:23.00
项目类别:青年科学基金项目
4

大偏差与随机变分学

批准号:19131043
批准年份:1991
负责人:黄志远
学科分类:A0210
资助金额:6.00
项目类别:重点项目