低权Jacobi形式及其应用

基本信息
批准号:11271283
项目类别:面上项目
资助金额:52.00
负责人:周海港
学科分类:
依托单位:同济大学
批准年份:2012
结题年份:2016
起止时间:2013-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:陆洪文,牟全武,宋凡,孙传亮,吕晓东,邵建文
关键词:
低权奇异模mock模形式Jacobi形式弱Maass形式
结项摘要

In the past decade, there are two remarkable breakthroughs in the applications of modular forms. The one is that a close relation of singular moduli with modular forms has been constructed, whick is provoked by the celebrated work of Borcherds, and the other is the mystery of mock theta functions left by Ramanujan has been uncovered. These two seemingly unrelated topics have been promoted and merged each other these years. Many new methods, new ideas and new concepts have emerged and a new system of theory is under way. The lead actors of the system are weak Maass forms, mock modular forms and Jacobi forms. The focuses of this program are Jacobi forms of low weight and their applications in singular moduli and mock theta functions. Specifically speaking, we will construct Jacobi forms of low weight by theta lifts and consider their arithmetic. The generating functions of singular moduli, mock theta functions and certain rank of partition functions will be constructed as holomorphic parts of real analytic Jacobi forms. We will also consider various correspondences among Jacobi forms,weak Maass forms and mock modular forms. This program involves many focuses of modern number theory, which are meeting ground for modern analysis, algebra and geometry.

近十年,在模形式理论的应用方面出现两大令人瞩目的突破。一个是在Borcherds杰出工作的推动下,奇异模理论取得极大进展;另一个是,关于Ramanujan遗留的mock theta函数的谜团已被揭开。这两方面看似无关,却相互促进,相互交织,有许多新方法、新思想、新概念不断涌现,一套新的理论体系初见端倪。居于该理论体系核心的有弱Maass形式、mock模形式和Jacobi形式。本项目主要以低权Jacobi形式为核心,考虑低权Jacobi形式的算术性质及其在奇异模和mock theta函数方面的应用。具体讲,构造低权Jacobi形式,考虑其算术性质,进而利用低权Jacobi形式性质来研究奇异模、mock theta函数和分拆函数,以及与弱Maass形式、mock模形式的各种关联。本课题涉及当代数论研究的核心热点问题,是当代数论和分析、代数、几何的交叉领域,有重要的研究意义和价值。

项目摘要

本项目在Jacobi形式的算术理论以及堆垒素数论的一些课题做了比较深入的研究,取得了比较好的进展。低权Jacobi形式与新兴的调和Maass形式,mock模形式有密切的关系,在椭圆曲线、组合数论、顶点算子代数及数学物理方面都有广泛的应用。具体来讲,我们做了如下几个方面的工作:1. 深入研究了非全纯的skew-holomorphic Jacobi形式的算术性质,包括它的迹公式和维数公式,并且对skew-holomorphic Jacobi理论进行了全面系统的发展;2. 考虑了低权Jacobi形式与四元代数的算术性质,推广了Gross的一个结果,给出Eichler-Selberg迹公式一个新的证明;3. 考虑了几类mock theta 函数的一些性质;4. 研究了某些混合幂的Waring—Goldbach问题及例外集问题,还证明了满足一定条件的大偶数可表示为四个素数平方与117个2的方幂之和;5.还考虑了素变量丢番图逼近,得到更优的上界。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
2

基于多模态信息特征融合的犯罪预测算法研究

基于多模态信息特征融合的犯罪预测算法研究

DOI:
发表时间:2018
3

三级硅基填料的构筑及其对牙科复合树脂性能的影响

三级硅基填料的构筑及其对牙科复合树脂性能的影响

DOI:10.11951/j.issn.1005-0299.20200093
发表时间:2020
4

CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值

CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值

DOI:
发表时间:2022
5

能谱联合迭代重建在重度肝硬化双低扫描中的应用价值

能谱联合迭代重建在重度肝硬化双低扫描中的应用价值

DOI:10.3760/cma.j.issn.0254-5098.2019.04.012
发表时间:2019

周海港的其他基金

批准号:10726030
批准年份:2007
资助金额:3.00
项目类别:数学天元基金项目
批准号:10801105
批准年份:2008
资助金额:17.00
项目类别:青年科学基金项目

相似国自然基金

1

Jacobi形式的Kohnen plus空间及其应用

批准号:11901411
批准年份:2019
负责人:苏仁和
学科分类:A0102
资助金额:26.00
项目类别:青年科学基金项目
2

Jacobi形式的算术

批准号:10801105
批准年份:2008
负责人:周海港
学科分类:A0103
资助金额:17.00
项目类别:青年科学基金项目
3

Skew-holomorphic Jacobi形式的算术

批准号:10726030
批准年份:2007
负责人:周海港
学科分类:A0103
资助金额:3.00
项目类别:数学天元基金项目
4

低权模型式的构造及其在二次型和椭圆曲线中的应用

批准号:10271042
批准年份:2002
负责人:王学理
学科分类:A0103
资助金额:13.50
项目类别:面上项目