Long-chain alkanes are major components of diesel (C9-C22) and jet fuels (C8-C16), and biomass as the most abundant and exclusive source of organic carbon has shown the great potential in production of renewable energy. In recent years, much attention has been laid on development of efficient ways to increase the length of carbon chain, which is recognized as one of the key and difficult processes for high-quality fuel production. In our previous studies, the applicant has successfully designed and prepared a series of functional materials for efficient conversion of C6 sugars to furanic compounds, wherein the possible reaction mechanisms are also investigated. Hereby, this project will further explore and optimize reaction pathways to increase the carbon-chain length of biomass derivatives, as well as establish acid-metal multifunctional materials for one-pot catalytic transformation of carbohydrates and furan derivatives directly into long-chain alkane fuels through multi-step reaction routes by using terpenes as hydrogen donor and solvent. The possible reaction mechanisms or pathways will also be studied through catalyst characterization, product distribution, isotope labeling, and other related methods, so as to provide experimental and theoretical fundamentals for directional establishment of efficient catalytic systems to synthesize biomass-based long-chain alkane fuels.
长链烷烃是柴油(C9-C22)和航空煤油(C8-C16)的主要组分,生物质作为后化石时代最丰富且唯一的有机碳源在可再生能源制备方面表现出极大的潜能。近年来,寻求有效增加生物质衍生物碳链长度的方法是国内外相关课题研究的重点和难点之一。申请者在前期工作中成功设计和制备出一系列功能材料应用于催化六碳糖高效转化为呋喃衍生物,并探究了可能的催化反应机理。本申请拟在先前工作的基础上,进一步优化碳链延长路径,选用不干扰产物分布的单萜烯为氢供体和溶剂,并构建出固体酸载体-金属颗粒多功能催化剂,以期一锅多步催化碳水化合物和呋喃衍生物直接转化为长链烷烃燃料。通过催化剂结构表征、催化体系产物分布和同位素标记等研究手段,探讨可能的反应机理或历程,为定向构建合适的催化体系合成生物质基长链烷烃燃料提供一定的实验和理论基础。
生物质具有资源丰富、可再生、清洁环保、低碳排放、储存和运输便利等特点。经催化加氢脱氧过程,生物质碳水化合物可直接转化为短链烷烃燃料(≤C6),但所得小分子的燃烧热值往往较低。因此如何有效增加生物质衍生物的碳链长度是“高质”生物质能研究的重点和难点所在。为级联催化生物质衍生物转化为高值液体燃料,本项目设计和优化出多种碳链延长路径,筛选出合适的氢供体,并构建出一系列多功能固体催化剂,实现了一锅多步催化生物质基呋喃衍生物直接转化为高质量生物燃料。同时,针对性探讨了可能的反应机理或历程,为定向构建合适的催化体系制备可再生高质烷烃燃料提供一定的实验和理论基础。在项目经费支持下,优选获得新型、高效的碳链延长技术路线2项,设计和制备出2类高活性、易回收的酸碱多功能催化剂用于直接催化碳水化合物及其衍生物转化为高质生物燃料,并对转化体系进行了动力学和反应机理与历程的研究。基于上述研究,以第一或通讯作者在ACS Catalysis、Green Chemistry、Applied Energy、Energy Conversion and Management、ACS Sustainable Chemistry & Engineering等本领域主流期刊上发表SCI论文51篇,授权发明专利2项(含美国发明专利1项)、申请中国发明专利3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
中国参与全球价值链的环境效应分析
催化碳水化合物“一锅法”转化为高附加值呋喃衍生物的双功能两性材料制备及性能研究
在超临界状态下长链烷烃的催化脱氢
长链烷烃脱氢与催化燃烧反应直接耦合的科学与技术基础
Pseudomonas aeruginosa长链烷烃羟化酶基因的研究