非线性分数阶微分方程的高精度数值方法的研究

基本信息
批准号:11526071
项目类别:数学天元基金项目
资助金额:3.00
负责人:马晓华
学科分类:
依托单位:合肥学院
批准年份:2015
结题年份:2016
起止时间:2016-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:牛欣,徐立祥,谭玲燕,江立辉
关键词:
配置方法收敛阶常微分方程非线性问题
结项摘要

fractional differential equations have been proved to be a valuable tool in the modeling of many phenomena,especially in physics, mechanics, biology, engineering, finance, hydrology, and fractional-order controllers.Due to its profound physical background, the subject of the fractional differential equations is gaining much importance and attention. Generally, most fractional differential equations can not be resolved analytically.Therefore,the research of numerical method of the fractional differential equation is of important theory significance and practical value. Spectral methods are a widely used tool for solving several types of differential and integral equations. It provides exceedingly accurate numerical results for smooth problems. This project is to study the application of spectral collocation methods to a few class of nonlinear fractional integro-differential equation (including nonlinear fractional integro-differential equation and singular initial value problems of the Lane-Emden type in the fractional order ordinary differential equations). Later, the rigorous error analysis are given. This study is great of both theoretical and practical significance.

分数阶微分方程可用于模拟物理、力学、生物学、工程、金融、水文学、分数阶控制器等领域中的许多现象。由于其深厚的物理背景,分数微分方程已经变成一个非常重要的热门课题。一般情况下,大多数分数阶微分方程的解析解是难以获得的,所以,有必要开展其数值方法的研究。而谱方法作为求解微分方程的一种重要数值方法,它的主要优点是高精度,已被应用于科学和工程计算的众多领域。本项目旨在研究谱配置方法求解几类非线性分数阶积分微分方程初值问题(包括非线性分数阶积分微分方程和Lane-Emden型非线性分数阶微分方程奇异初值问题),并给出严格的误差分析。本课题的研究是一项具有重要理论意义和实际应用价值的工作,将对现有的理论和算法有所发展。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
3

气载放射性碘采样测量方法研究进展

气载放射性碘采样测量方法研究进展

DOI:
发表时间:2020
4

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021
5

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022

马晓华的其他基金

批准号:61634005
批准年份:2016
资助金额:280.00
项目类别:重点项目
批准号:11801127
批准年份:2018
资助金额:25.00
项目类别:青年科学基金项目
批准号:21406060
批准年份:2014
资助金额:25.00
项目类别:青年科学基金项目

相似国自然基金

1

分数阶偏微分方程高精度数值方法的研究

批准号:11771083
批准年份:2017
负责人:李娴娟
学科分类:A0501
资助金额:48.00
项目类别:面上项目
2

分数阶常微分方程高精度数值方法的理论研究及应用

批准号:11771112
批准年份:2017
负责人:赵景军
学科分类:A0504
资助金额:48.00
项目类别:面上项目
3

分数阶微分方程的高精度数值方法和反常动力学行为

批准号:11271173
批准年份:2012
负责人:邓伟华
学科分类:A0504
资助金额:60.00
项目类别:面上项目
4

时间分数阶微分方程的弱奇异解的高精度数值逼近方法的研究

批准号:11901151
批准年份:2019
负责人:周晗
学科分类:A0501
资助金额:25.00
项目类别:青年科学基金项目