The organometal trihalide perovskite as an emerging star material exhibit amazing leaping progress and huge application potential in the field of solar cells. In this project, the CH3NH3PbI3-xMx(M=Cl, Br) perovskite quantum dots sensitized ZnO nanowires arrays organic-inorganic hybrid all solid-state solar cells will be fabricated. By adjusting the doping concentration of chlorine or bromine in perovskite, the photovoltaic performance of solar cells will be systematically investigated and the relative mechanism of interfacial charge behaviors will be revealed. The detailed content includes the following parts: The perovskite quantum dots will be deposited in situ on the ZnO nanowires arrays with effective doping; According to the native structure and property of perovskite, the effects and its corresponding mechanism of chlorine or bromine doping on the structural, optical and electrical properties will be investigated in detail by both theoretical calculation and advanced experimental characterization; The relationship between chlorine or bromine doping and photovoltaic performance will be clarified by systematically investigating how the doping influences the photovoltaic performance of solar cells; The variation of interfacial charge behaviors via chlorine or bromine doping, such as generation, separation, transportation and recombination, will be systematically investigated and the relative mechanism will be revealed. All the results not only benefit for the thorough understanding of native mechanism of this type solar cell, but also provide necessary experimental basis and theoretical instruction for further improving their photovoltaic performance.
作为太阳能电池领域新兴明星材料,有机金属卤化物钙钛矿半导体展现出惊人发展速度和巨大的应用前景。本课题拟选取CH3NH3PbI3-xMx(M=Cl, Br)钙钛矿量子点敏化ZnO纳米线阵列有机无机-杂化全固态太阳能电池为研究对象,通过调节氯/溴的掺杂浓度系统地研究电池的光伏性能,揭示界面电荷行为机理:实现钙钛矿量子点在ZnO纳米线阵列表面的原位有效掺杂沉积;依据钙钛矿材料自身结构与特性,通过理论计算和先进实验表征手段相结合,深入研究氯/溴掺杂对其结构、光学和电学等性能的影响规律及其机制;系统研究氯/溴掺杂对电池光伏性能的影响,阐明氯/溴掺杂与电池光伏性能的构效关系;系统研究氯/溴掺杂对电池界面电荷产生、分离、输运和复合等行为的影响,揭示钙钛矿量子点中氯/溴掺杂影响电池界面电荷行为机理。该项目的研究有助于深入了解钙钛矿电池内在机制,也为进一步提高该类电池性能提供必要实验依据和理论指导。
有机卤化物钙钛矿太阳电池(PSCs)因原材料丰富、工艺简单、光电转换效率(PCE)高等优点成为当前光伏领域的研究热点。本项目围绕钙钛矿太阳电池实际应用面临的关键问题,在提高光电转换效率、提高器件稳定性、降低毒性等方面开展了研究工作。创新性成果有:以CH3NH3PbI3钙钛矿材料为敏化剂,制作了CdS/CH3NH3PbI3共敏化ZnO纳米棒太阳能电池,利用钙钛矿共敏化后,电池光谱响应范围拓宽,吸光强度增强,为提高量子点敏化太阳能电池光电转换效率提供了有效手段;采用先进的稳态、瞬态光电测试手段探究了热处理和UV-O3处理ZnO电子传输层(ETLs)表面对PSCs光伏性能的影响,UV-O3处理即能去除ZnO ETLs表面基团,又能填补其内部氧空位,可将电池的PCE提高至17%,创原位无界面修饰层电池PCE纪录;创新性地深入探究氯元素梯度掺杂对钙钛矿材料结构、光电性能及钙钛矿太阳电池光伏性能的影响,结果表明氯元素梯度掺杂能够形成梯度型能级结构,加速电荷分离和传输,有效提高电池PCE至20.58%;为优化钙钛矿与ETLs之间的电荷动力学和光学性质匹配度,创新性地以反极性溶剂H2O作为添加剂制备TiO2分层电子传输层,PCE高达20.02%,有效提高器件在空气中稳定性;为减低电池毒性,成功构筑了Sn-Pb二元钙钛矿太阳电池,创新性地选用兼具还原性和络合性的酒石酸为添加剂,并采用超声辅助法调控钙钛矿吸收层结晶取向,将电池PCE提高至13.45%,滞回减小,稳定性提高;为了探索钙钛矿材料在现有商业化硅晶电池领域应用的可能性,创新性的将CsPbCl3:Mn2+量子点作为发光下转换器引入到多晶硅太阳电池中,提高短波区域的光捕获能力, PCE提高了6.2%。在Science Advance, Advanced Functional Materials, ACS applied materials and interfaces, Journal of Power Source等国际期刊上发表相关的SCI学术论文20篇,中文期刊论文7篇,会议论文4篇,授权和申请发明专利各1项,获吉林省科学技术(自然科学)奖1项;培养本研究领域的硕士毕业生3名,在读博士生2名,在读硕士生3名。完成计划目标内容。为钙钛矿太阳电池发展提供了多种可靠的技术方案,为推动该类电池应用化进程做出了重要贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于生物信息挖掘与TLR4/MyD88/NF-κB通路调控效应研究川芎嗪纳米制剂防治术后腹腔粘连机制
钙钛矿结构有机金属卤化物量子点太阳能电池的研究
有机无机卤化物钙钛矿的奇异材料特性:离子行为和载流子空间分离,及其对钙钛矿光伏器件的影响
界面电子动态对钙钛矿光伏器件性能影响研究
有机金属卤化物钙钛矿薄膜中的光激发态研究