几类Hamilton系统与耗散系统的脉冲分支及相关问题研究

基本信息
批准号:11201481
项目类别:青年科学基金项目
资助金额:22.00
负责人:刘易成
学科分类:
依托单位:中国人民解放军国防科技大学
批准年份:2012
结题年份:2015
起止时间:2013-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:李志祥,王晓,何艳丽
关键词:
脉冲分支Hamilton系统脉冲耗散系统异宿轨同宿轨
结项摘要

Impulsive hamiltonian systems and dissipative systems are a class of common mathematical models, which described the development process of things with a discontinuity or instant mutation characteristics. It is widely used in various fields of science and technology, such as space technology, mechanics, control system, biological and medical fields. Impulse is a key factor to cause the dynamic properties changing for this kind of differential system. Recent research shows that, with the impulse, a hamiltonian system without periodic solutions and heteroclinic orbit, admits periodic solutions and heteroclinic orbit. To reveal the influence principle of the impulsive dynamic properties for the differential system is a key step for the impulse control. However, how to influence on the impulsive differential system's dynamic properties are still unclear. The project focuses on some impulsive hamiltonian systems and dissipative systems as the research object. We investigate the impulse bifurcation of these hamiltonian systems and dissipative systems by using the variational method, the new fixed point theorems and the discrete system theory, and explore the influence principle for impulse to dynamical properties of the periodic and homoclinic and heteroclinic orbit. This research would provide theoretical support for the design to the Chinese emergency orbit maneuver. With impulse bifurcation parameters, there are no international research report on the equilibrium point and the closed orbit bifurcations of impulsive hamiltonian system and dissipative system.

脉冲Hamilton系统与耗散系统是描述事物状态发展过程具有不连续或瞬间突变特性的常见数学模型,是广泛用于各科技领域中的重要模型,如航天技术、力学、控制系统、生物学以及医学等领域。脉冲是导致这类微分系统动力学性质发生变化的重要因素。研究显示,在脉冲作用下,没有周期解与异宿轨的Hamilton系统出现了周期解与异宿轨。揭示脉冲对微分系统动力学性质的影响规律,是实现脉冲控制的关键。然而至今对于脉冲如何影响微分系统的动力学性质仍不清楚。本项目以几类带脉冲作用的Hamilton系统和耗散系统为研究对象,依托变分法、新型不动点定理以及离散系统理论等工具,研究这些Hamilton系统及耗散系统的脉冲分支,探索脉冲对其周期解及同宿异宿轨等动力学性质的影响规律。本项目的研究可为我国设计空间快速机动轨道提供理论支撑。以脉冲为分支参数研究脉冲Hamilton系统与耗散系统的平衡点与闭轨分支,国内外尚未见报道。

项目摘要

脉冲Hamilton系统与耗散系统是描述事物状态发展过程具有不连续或瞬间突变特性的常见数学模型,是广泛用于各科技领域中的重要模型,如航天技术、力学、控制系统、生物学以及医学等领域。本项目研究了带脉冲作用的Hamilton系统和耗散系统为研究对象,依托变分法、矩阵分析、新型不动点定理以及离散系统理论等工具,研究这些Hamilton系统及耗散系统的脉冲分支,探索脉冲对其周期解及同宿异宿轨等动力学性质的影响规律。作为应用,研究了时滞自组织系统和带指令的自组织系统的集群模式和集群速度,获得了时滞与自组织系统的集群速度的复杂非线性关系,回答了马里兰大学S. Motsch和E. Tadmor 2011年提出的公开问题。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
3

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
4

卫生系统韧性研究概况及其展望

卫生系统韧性研究概况及其展望

DOI:10.16506/j.1009-6639.2018.11.016
发表时间:2018
5

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018

刘易成的其他基金

批准号:18870135
批准年份:1988
资助金额:4.00
项目类别:面上项目
批准号:18770141
批准年份:1987
资助金额:1.00
项目类别:面上项目
批准号:11671011
批准年份:2016
资助金额:46.00
项目类别:面上项目

相似国自然基金

1

非线性Kirchhoff方程与二阶脉冲Hamilton系统相关问题的研究

批准号:11561043
批准年份:2015
负责人:王大斌
学科分类:A0301
资助金额:35.00
项目类别:地区科学基金项目
2

几类奇异摄动系统的分支问题研究

批准号:11201072
批准年份:2012
负责人:沈建和
学科分类:A0301
资助金额:23.00
项目类别:青年科学基金项目
3

几类非线性动力系统的局部结构分支相关问题研究

批准号:11671114
批准年份:2016
负责人:徐衍聪
学科分类:A0301
资助金额:40.00
项目类别:面上项目
4

Hamilton系统的周期解及相关问题

批准号:10871059
批准年份:2008
负责人:安天庆
学科分类:A0206
资助金额:28.00
项目类别:面上项目