High efficiency separation technology is significant for the high-end application of biotechnology. Membrane adsorption is a promising way for the bioseparation. However, the trade-off phenomenon of flux and adsorption capacity has been a bottleneck problem for the developing membrane adsorption method. How to develop the function executive ability of adsorption sites effectively is the key to implement efficient adsorption. This project put forward new ideas from the supramolecular viewpoint. The adsorption sites are connected onto the rotors of supramolecular functional compounds. During adsorption, the adsorption sites on the rotors can optimize position automatically by sliding and rotation, hence the high efficiency adsorption. The controllable preparation of the supramolecular brushes is achieved by molecular modification of supramolecular functional compounds as well as the ATRP and click reaction design. Combining with the precise regulation and control of three-dimensional pore structure of basement membrane, the controllable fabrication of supramolecular channels composed of supramolecular brushes and membrane pores can be achieved. The relationship among microcosmic, mesoscopic and macroscopic properties of the supramolecular channels, including the surface molecule structure, supramolecular channels distribution on interface, flux and adsorption capacity, will be investigated. Based on above research and the clear understanding on the self moving adsorption mechanisms including moving track and driving force, the supramolecular channel membranes with self moving adsorption function can be achieved. The related research can provide new ideas for the design of high performance membrane material. The common and guiding knowledge and methods obtained in this project can also complement the subject connotations, such as adsorption and catalysis, for which the functional sites are significant.
生物技术高端应用迫切需要高效分离技术,膜吸附虽极具潜力但仍受通量/吸附容量trade-off现象等瓶颈难题制约,如何有效发挥吸附位的功能执行能力是实现高效吸附的关键。本课题从超分子角度提出新思路:将吸附位耦合在聚轮烷超分子功能体的"转子"上,吸附过程中,"转子"上的吸附位可以发生滑移和旋转,以仿生思维自动优化位置,以自移动实现高效吸附。 通过超分子功能体的分子修饰和ATRP-点击反应体系设计,可控制备超分子刷,结合基膜三维孔道精确调控,实现超分子刷-基膜孔道构成的超分子通道的可控构建;探究超分子通道的微观(表面分子结构)/介观(界面超分子刷环境)/宏观(吸附容量、通量)特征三者之间的关系和规律,在探明吸附位移动轨迹、移动驱动力即自移动机制基础上,构建具有自移动吸附功能的超分子通道膜,为高性能膜材料创制提供新思路,并形成具有共性指导意义的规律和方法,丰富涉及位点的吸附、催化等学科的内涵。
生物技术高端应用迫切需要高效分离技术,膜吸附虽极具潜力但仍受通量/吸附容量trade-off 现象等瓶颈难题制约,如何有效发挥吸附位的功能执行能力是实现高效吸附的关键。本课题从超分子角度提出新思路,构筑具有超分子通道效应的新型功能膜,具体在以下四个方面取得重要进展。(1)以点击反应为封端反应,提供了一种快速、高效、环保、高产率的聚轮烷(PR)的制备方法,通过在水相中的一步法合成了含有PEG 轴、α-CD 环的聚轮烷,并通过核磁共振等手段证明了其分子结构,特别是通过TEM表征,观测到了其蠕虫状结构,为相关领域提供重要借鉴。(2)通过点击化学手段实现了环糊精、聚轮烷功能体的固载化,构建了含有超分子通道的新型亲和膜,通过相分离行为的控制,优化了通道形态,探讨了膜的通道结构与性能的关系。所制备的新型亲和膜中,环糊精和聚轮烷兼具功能体和间隔臂的双重角色,具有提供偶联反应基团、克服空间位阻的作用,同时聚轮烷以其可移动性能实现了对生物大分子的多重位点吸附,相关研究丰富了膜结构调控基础理论。(3)利用环糊精的表面偏析作用提高了EVAL膜的抗污染性能,结合相分离行为的调控,获得了兼具高通量和抗污染特性的EVAL膜,为抗污染膜的构建提供重要启示,相关研究对于环糊精、聚轮烷特殊功能和结构的深入认识、功能拓展具有重要意义。(4)通过本项目的创新策略有效提升了膜的亲和性能,探明了膜吸附性能影响机制,研究了膜应用特性。环糊精和聚轮烷作为超分子化学最重要的研究主体,得到了广泛的研究,但用于亲和分离的相关报道尚少,本课题相关研究对于环糊精、聚轮烷应用拓展具有重要意义,为生物大分子分离提纯领域提供了一种极具潜力的方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
Wnt 信号通路在非小细胞肺癌中的研究进展
具有对气体选择吸附----分离功能膜的研究
具有离子通道效应的陶瓷纳滤膜构建基础研究
具有光调控性质人工跨膜通道的组装及其功能研究
化学自振荡反应协同主客体作用构建具有分子"活塞"功能的智能高分子材料