Strong ground motions presented that seismic records at canyons were significantly amplified due to the topography. Moreover, prior investigations of structural damages under earthquakes proved that compared with structures in plain areas, the canyon-crossing structures were more likely to be damaged under earthquakes. This phenomenon has been termed the canyon topographic effect (CTE). To design bridges in canyons properly, two problems need to be addressed urgently. The first problem is that when ground motions of canyons are used as inputs of seismic simulations of bridges, how can the amplification of the ground motions be considered properly. The second problem is that a seismic design methodology of bridges needs to be developed with the consideration of CTE. The research of seismic performance of canyon-crossing bridges has been an important issue in the seismological community. In this research, the long-span girder bridges with high piers located in canyon and near active fault will be taken as case studies. The project will mainly focus on the input mechanism of strong ground motions, and the influence of CTE on seismic disaster-causing mechanism and analysis method of the bridges. Three aspects will be performed: the consideration of the amplification of ground motions, the failure mechanism of the bridges, and the seismic design methodology. A simulation methodology of ground motions will be proposed with the considerations of the near-fault effect and CTE. Based on experimental tests and numerical simulations, the seismic behavior of the canyon-crossing bridges will be explored. Afterward, the scientific criteria for evaluating the seismic performance of the bridges will be developed. Finally, a performance-based seismic design methodology will be put forward. Two disciplines will be involved in this project, which is the seismology engineering and earthquake engineering. Outcomes of this study will offer theoretical supports for seismic analyses of bridges located in canyon and near active fault and will assist the construction of bridges in Sichuan-Tibet railway. It will be of great significance in scientific research and engineering application.
强地震动观测数据表明,河谷场地迎波侧与背波侧地震动有异常放大现象,宏观震害调查亦显示其致灾效应显著加剧。河谷地形效应影响下地震动输入机制(如何定量反映河谷地形效应)、抗震设计理论(考核河谷两侧地震动差异效应带来的有效抗震设计方法)是亟待解决的问题,也是地震学界关注的热点问题。本项目拟以川藏线上跨河谷且靠近断层的高墩大跨梁桥为研究对象,围绕强地震动输入机制、河谷地形效应对桥梁致灾机理与分析方法两个关键科学问题,从地震动模拟、桥梁破坏机理及抗震设计方法等方面对河谷场地桥梁抗震防灾性能进行研究。拟提出考虑近断层效应和河谷地形效应的地震动模拟方法;通过试验与数值分析,揭示河谷场地桥梁震害机理;继而,建立其抗震性能科学评价方法,形成面向设计的基于性能抗震设计理论。项目是地震学和工程抗震的交叉学科,研究成果可为河谷场地桥梁震灾分析提供理论支撑,服务于川藏铁路桥梁建设,具有重要的科学意义和工程应用价值。
强地震动观测数据表明,河谷场地迎波侧与背波侧地震动有异常放大现象,宏观震害调查亦显示其致灾效应显著加剧。河谷地形效应影响下地震动输入机制(如何定量反映河谷地形效应)、抗震设计理论(考核河谷两侧地震动差异效应带来的有效抗震设计方法)是亟待解决的问题,也是地震学界关注的热点问题。本项目以跨河谷且靠近断层的高墩大跨梁桥为研究对象,按照申报书技术路线开展研究,从地震动模拟、桥梁破坏机理及抗震设计方法等方面对河谷场地桥梁抗震防灾性能进行研究。提出了考虑近断层效应和河谷地形效应的地震动模拟方法;通过数值分析,揭示了近源效应下跨河谷桥梁的震害机理;继而,建立了基于性能的抗震性能科学评价方法;最后,研发了UHPC模壳增强桥墩、UHPC预制装配桥墩等系列高抗震韧性桥墩,基于耦联防御理念研发了可应对活断层地震作用的高韧性桥梁结构新体系,为解决活断层区域跨河谷桥梁抗震防御及韧性提升等“卡脖子”难题提供了思路。.项目实现了既定研究目标,在EESD、SDEE、ES、《中国公路学报》等国内外权威期刊发表论文14篇,与UBC等世界知名高校开展合作研究,在抗震领域顶级会议17WCEE做专题报告。该项目是地震学和工程抗震的交叉学科,研究成果可为河谷场地桥梁震灾分析提供理论支撑,直接服务于川藏铁路桥梁建设,具有重要的科学意义和工程应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
中国参与全球价值链的环境效应分析
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
近断层高墩桥梁强震破坏机理及其抗倒塌性能研究
大跨径预应力混凝土箱梁桥开裂与下挠耦合作用机理研究
强震作用下曲线梁桥的破坏机理与减震控制研究
强震作用下基于多尺度模型的超高墩大跨连续刚构桥动力失稳灾变机理研究