The separation of low concentration CO2 in confined space is very important to protect life safety and to ensure work efficiency of operation staff in manned spacecraft, submarines or manned submersibles. Taking the principle design of membrane technology as the starting point, integrating principles and technical characteristics of solid amine adsorption, membrane adsorption and electric swing adsorption, a novel electric swing adsorption process based on conductive coal-based porous carbon membrane as well as the preparation method of membrane materials have been put forward in the current project. Polyamine, microphoneorous polyamine, or poly (ionic liquid) loaded conductive porous carbon electric swing adsorption membrane material will be synthesized via the surface modification, graft polymerization, hyperbranched or super crosslinking process. By studying the relationship between the structure and the performance of CO2 capture, the mass transfer model will be established to explain the separation mechanism. By optimizing the fabrication technique, controlled synthesis of high efficiency and stability of membrane material could be achieved. Furthermore, through the component design, the membrane module of low energy consumption, small size and light weight is expected. The implementation of this project will greatly promote the development of the basic theory of membrane separation, enrich and develop the preparation technology of membrane materials, which is of great significance to promote the innovation and development of new membrane materials in China.
密闭空间中低浓度CO2分离对保障载人航天器、潜艇和深潜器的作业人员生命安全和工作效率具有十分重要的意义。本课题从膜技术原理设计出发,结合固体胺吸附、膜吸附和变电吸附的原理和技术特点,提出了一种新型的基于导电煤基多孔炭膜的变电吸附膜工艺及相应膜材料制备方法。煤基多孔炭支撑体经过表面改性、接枝聚合、超支化或超交联等步骤,得到聚有机胺、微孔胺或聚离子液体修饰的导电多孔炭膜材料。通过研究结构和CO2捕获性能关系,建立传质模型,诠释其分离机制。通过优化制备工艺,有望实现高效、高稳定性膜材料的可控制备,通过组件设计,有望实现膜组件的低耗能、小型化和轻量化。本课题的实施将有力推动膜分离基础理论的进步,丰富和发展膜材料的制备工艺,对推动我国新型膜材料的创新与研发具有非常重要的意义。
低浓度CO2的捕获对保障载人航天器、潜艇和深潜器的作业人员生命安全和工作效率具有十分重要的意义。炭材料具有优异的结构可调性,良好的热稳定性、化学稳定性以及优异的电热性能,如今广泛地应用于吸附、电化学储能以及催化反应等重要领域。本项目以廉价的煤基多孔炭膜为导电支撑体,通过表面改性和表面接枝/浸渍有机胺,完成了适用于低浓度CO2捕获的新型煤基多孔炭变电吸附膜的构建。通过设计和优化支撑体的结构形式、表面改性方法和表面接枝/浸渍技术,建立膜结构(煤基多孔炭膜孔道结构、表面结构、有机胺负载形式)与CO2捕获性能的关系,通过CO2吸附动力学研究,诠释了煤基多孔炭变电吸附膜分离机制。有机胺吸附剂与煤基管式炭膜相结合得到的固体胺变电吸附剂,所用设备简单,占用空间小,能源利用率高,并且能够有效地捕获CO2并实现其快速再生,大幅降低了CO2捕获所需的成本,具有广阔的应用前景。本项目为设计和开发具有高吸附容量、高选择性、高吸/脱附速率的小型化、轻量化、低耗能的煤基多孔炭变电吸附膜及膜组件奠定了坚实的理论和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
家畜圈舍粪尿表层酸化对氨气排放的影响
铁酸锌的制备及光催化作用研究现状
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
高氨基嫁接改性炭凝胶吸附分离密闭空间低浓度CO2的研究
ZIFs@SBA-15复合材料的设计合成及吸附分离密闭空间低浓度CO2的研究
密闭空间低浓度CO2的固态胺材料分子结构与吸(脱)附性能关系研究
整体式含氮分级孔炭质CO2吸附剂的设计制备及变电吸附性能研究