Working duration is one of the bottlenecks which limit the life span of the satellites. The common high accuracy gyroscopes such as mechanical and optical gyroscopes can not meet the requirement of the long life satellites. Vibratory cylindrical shell gyroscope (VCSG) owns advantages of high accuracy, long life and low power consumption, etc. Therefore, VCSG is a type of ideal gyroscopes which can be used in long life satellites. However, there are some bottleneck techniques for the thin resonant structures of the VCSG presently. The manufacturing accuracy of the high quality structure is beyond the requirement; the inner stress of the resonant structure is hard to be controlled; and the trimming of the resonant structure is also difficult. Aiming at the problems of accuracy design, manufacturing optimizing technology, stress control, structure trimming and the theory of test and control, the project is to be carried out. In order to optimize the characteristic parameters of the thin resonant structures, a novel high precise manufacturing technology is proposed. In this project, the key scientific problems of VCSG will be solved. These problems include: the influencing principle of the characteristic parameters on gyroscope performance; acting effect of the structural and manufacturing parameters on geometrical accuracy and inner stress in the fabrication process; the eigenfrequencies matching and eigenmodes controlling based on small mass perturbation. Finally, the high accurate manufacture of the high quality thin resonant structures and the fabrication of the high performance VCSG will be completed. This project will provide basic theory and key technique support for the design of high accuracy attitude control system used in long life satellites.
高性能陀螺仪的持续工作时间是制约卫星寿命的瓶颈因素之一。机械转子陀螺和光学陀螺等常用高性能陀螺的持续工作时间不能满足长寿命卫星的要求。圆柱壳体振动陀螺具有精度高、寿命长、功耗低等特点,是长寿命卫星的理想选择,但目前面临高品质薄壁谐振结构加工精度难以保证、谐振结构内应力难以调控、谐振结构品质修调困难等技术瓶颈。本项目拟围绕高性能圆柱壳体振动陀螺的精度设计、加工工艺优化、应力控制、品质修调和测控理论开展研究工作,提出以品质特征参数优化为目标的谐振结构高精度制造新理论与新方法,重点突破薄壁谐振结构品质特征参数对陀螺性能的影响规律、薄壁谐振结构制造过程中的结构与工艺参数对几何精度与内应力的影响机理、基于微质量扰动的谐振结构频率匹配与模态调控机理等关键科学问题,完成高品质薄壁谐振结构的超精密加工和高性能圆柱壳体振动陀螺的研制,为我国长寿命卫星精确姿态控制系统的设计提供理论基础和关键技术支持。
项目背景:针对我国卫星姿态控制系统对高性能、长寿命陀螺仪的迫切需求,以高性能圆柱壳体振动陀螺为研究对象,突破其核心薄壁谐振结构的高精度制造理论与方法。.主要研究内容:项目研究了薄壁谐振结构的品质特征参数建模,实现了高性能圆柱壳体振动陀螺的精度设计。研究了薄壁谐振结构精密加工的几何微形变机理与工艺优化,实现了亚微米级的超高几何精度。研究了应力形成机理与控制方法,实现了谐振结构的高稳定振动。研究了基于微质量扰动的谐振结构品质修调理论与方法,搭建了全自动化修调系统。研究了高性能圆柱壳体振动陀螺测控理论与系统集成,完成了测控电路的研制、谐振结构的封装与系统集成,并对陀螺性能进行了综合性能测试。.重要结果:实现了高性能圆柱壳体振动陀螺谐振结构与原理样机的研制,主要性能指标达到:谐振结构壁厚0.3 mm;谐振结构直径25 mm;圆度优于0.5微米;频率裂解优于0.01 Hz;陀螺量程±10 度/秒;陀螺零偏稳定性0.02 度/小时。.关键数据:项目成果获国防科技图书出版基金支持,出版专著《圆柱壳体振动陀螺》(国防工业出版社)。发表学术论文41篇,其中SCI收录30篇,EI收录7篇;申请国家发明专利10项,授权9项,完成情况超出预期目标。项目组已与陕西中航华燕仪器仪表公司签订成果转化合同,面向空天装备姿态测控需求,进行了圆柱壳体振动陀螺小批量试生产,目前进展顺利。陀螺样机在航弹制导控制系统、车载武器平台以及移动卫星通信平台展开了试用验证,运行情况良好。.科学意义:项目解决了高性能圆柱壳体振动陀螺品质特征参数建模、加工过程中的内应力形成与抑制、谐振结构品质精密修调等关键基础问题。研究成果将为我国高性能圆柱壳体振动陀螺发展提供新的精密制造方法,提高我国高性能振动陀螺的自主研制能力,并对其他领域中此类高品质薄壁壳体零件的加工制造提供理论与技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
低轨卫星通信信道分配策略
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
气载放射性碘采样测量方法研究进展
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
波瓣式微壳体振动陀螺结构设计理论及其制造方法研究
圆柱壳体振动陀螺品质特征的飞秒激光精密修调机理研究
高灵敏多层式壳体振动陀螺的设计理论与关键技术研究
基于应力导向效应的圆柱壳振动陀螺刚性轴自稳定机理与方法研究