Cylindrical shell vibration gyroscope not only has the advantages of high sensitivity and long life, but also is smaller and lower power consumption. Consequently, it is the ideal choice of satellite attitude accurately control and long work life. By now, the mechanical tuning technology can not meet the design requirements of high precision. Therefore, this project put forward an innovative idea of a gyro precision trimming: removal of tiny quality (Accuracy is less than is 0.1μg) located in specific position of cylindrical shell vibration gyroscope by the femtosecond laser ablation method, can optimize the characteristics of gyro dynamic (dynamics characteristic) for real-time precision trimming. Thus the frequency cleavage of gyro is less than 0.01Hz, and the bias stability is better than 0.01o/h. This project will carry out accuracy dynamic modeling of the cylindrical shell vibration gyro, especially focus on in-depth study of micro quality disturbance and its distribution effecting on quality characteristics of gyro resonance. This project will furtherly research the interaction of femtosecond laser and constant elastic alloy of gyro, and study a new repair strategy and process to improve the quality of femtosecond laser gyroscope features. An important relationship models of high performance vibration gyroscope structure-trimming strategy-high performance of gyro will be built up. At last, this project will realize the trimming manufacturing of high precision cylindrical shell vibration gyro by femtosecond laser, and provides innovative technology prototype for high performance gyroscope of our country.
圆柱壳体振动陀螺不但具有高灵敏度和长寿命的优点,且体积小、功耗低,是实现卫星高精度姿态控制和长寿命工作的理想选择。机械制造误差、材料均匀性与内应力等因素使得陀螺无法达到设计目标,需要进行精密修调,目前机械修调无法满足圆柱壳体振动陀螺的高精度要求。为此,本项目提出一种陀螺精密修调的新思路:采用飞秒激光烧蚀方法去除圆柱壳体振动陀螺上特定位置的微量质量(精度优于0.1μg),对陀螺动态品质特征(动力学特性)进行实时精密修调,使得陀螺频率裂解小于0.01Hz、零偏稳定性优于0.01度/小时。本项目将对圆柱壳体振动陀螺进行精确动力学建模,深入研究微质量扰动及其分布对陀螺谐振品质特征的精确影响,并进一步研究飞秒激光与陀螺特种恒弹合金的相互作用规律,提出高品质陀螺的新型飞秒激光修调策略与工艺,建立高性能振动陀螺结构-修调策略-器件性能的相关模型,为圆柱壳体振动陀螺的高精度修调制造提供创新技术原型。
圆柱壳体振动陀螺具有灵敏度高、寿命长、体积小、功耗低等显著优点,是实现卫星高精度姿态控制和长寿命工作的理想选择。精密修调是实现振动陀螺高性能制造中不可或缺的重要工艺,机械修调难以满足高精度调谐需求。为此,本项目对圆柱壳体振动陀螺进行精确动力学建模,深入研究微质量扰动及其分布对陀螺谐振品质特征的影响规律,研究飞秒激光与陀螺特种恒弹合金的相互作用规律,提出了高品质陀螺兼顾调谐精度和调谐效率的新型飞秒激光修调策略与工艺,实现了关键位置上的微量(精度优于0.05µg)质量去除加工,建立了圆柱壳体振动陀螺的飞秒激光调谐加工系统,开展飞秒激光烧蚀恒弹合金实验、谐振频率自动化测量、频率裂解自动调谐等多项重要实验,实现了对圆柱壳体振动陀螺频率裂解的精密调谐加工,将频率裂解调谐至0.006Hz,调谐时间小于40min,实现了圆柱壳体振动陀螺的高精度高效率飞秒激光修调技术。为圆柱壳体振动陀螺的高精度修调制造提供了创新技术原型。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
空气电晕放电发展过程的特征发射光谱分析与放电识别
高性能圆柱壳体振动陀螺的高精度制造理论与方法
分子转动振动波包的飞秒激光调控
硅基微半球陀螺的飞秒激光高精度调谐方法研究
水下加肋圆柱壳体振动能量流和声辐射机理研究