缺失数据下基于经验似然的稳健推断函数

基本信息
批准号:11201174
项目类别:青年科学基金项目
资助金额:23.00
负责人:刘天庆
学科分类:
依托单位:吉林大学
批准年份:2012
结题年份:2015
起止时间:2013-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:姜丹丹,史海芳,张颂,贾博婷
关键词:
异常值稳健推断函数缺失数据经验似然秩方法
结项摘要

Rank regression is a very efficient and robust nonparametric method. However, in practice, direct application of rank regression is hindered, because missing data often occurs, even inevitable. To the best of our knowledge, inference for the parameter of a rank regression model with missing responses or partially covariates, has not been developed. Suppose that the missing response and the missing covariates are missing at random , we intend to construct a class of empirical likelihood-based robust inference function and give the estimator of regression parameter as well as its asymptotic properties. By using empirical likelihood-based robust inference function, we can get the chi-square test and the corresponding confidence region of the regression parameter. On one hand, empirical likelihood-based robust inference function is rank-based and thus robust to outliers. On the other hand, empirical likelihood-based robust inference function can handle the problem of missing responses or partially covariates and thus improve the inference efficiency. We will extend the theory of empirical likelihood-based robust inference function to the longitudinal data and repeated measurements as well as the quantile regression. Finally, based on the R software platform, we will develop software packages to implement the proposed statistical methods and algorithms.

秩回归是一种高效且稳健的非参数方法。但在实际应用中,数据缺失的情况经常发生,甚至是不可避免的。这给实际工作者使用秩回归方法造成了很大的困难。据我们所知,在响应变量或部分协变量数据缺失的情况下,关于秩回归的研究迄今为止还是空白。我们打算在响应变量或部分协变量随机缺失机制下构造一类基于经验似然的稳健推断函数,并给出回归参数的估计及其渐近性质。通过使用基于经验似然的稳健推断函数,我们可以得到参数的卡方检验以及相应的置信域。基于经验似然的稳健推断函数一方面是基于秩的,减弱了异常值对统计推断的影响,具有稳健性;另一方面,克服了响应变量或部分协变量缺失的影响,提高了推断效率。我们将推广缺失数据下基于经验似然的秩回归理论,使其可以处理:(1)缺失响应变量或部分协变量的纵向数据和重复测量数据;(2)缺失响应变量或部分协变量的分位数回归模型。最后,我们将基于R软件平台,开发软件包实现本项目所提出的统计方法。

项目摘要

logistic疾病风险回归,分位数回归和秩回归都是稳健的回归方法。但在实际应用中,数据缺失的情况经常发生,甚至是不可避免的。如果忽略缺失数据,直接应用稳健的回归方法,将产生低效甚至有偏的推断。本项目在不完全数据下,构造了一类基于经验似然的稳健推断函数。基于经验似然的稳健推断函数减弱了异常值对统计推断的影响,具有稳健性;另一方面,克服了响应变量或部分协变量缺失的影响,提高了推断效率。我们将基于经验似然的稳健推断函数分别应用于logistic疾病风险回归,分位数回归和秩回归,得到了高效且稳健的回归参数估计及其渐进性质。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

论大数据环境对情报学发展的影响

论大数据环境对情报学发展的影响

DOI:
发表时间:2017
2

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
3

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
4

气载放射性碘采样测量方法研究进展

气载放射性碘采样测量方法研究进展

DOI:
发表时间:2020
5

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021

刘天庆的其他基金

批准号:29876002
批准年份:1998
资助金额:12.00
项目类别:面上项目
批准号:50876015
批准年份:2008
资助金额:34.00
项目类别:面上项目
批准号:21676041
批准年份:2016
资助金额:64.00
项目类别:面上项目
批准号:31170945
批准年份:2011
资助金额:60.00
项目类别:面上项目
批准号:29306038
批准年份:1993
资助金额:5.00
项目类别:青年科学基金项目
批准号:30670525
批准年份:2006
资助金额:28.00
项目类别:面上项目
批准号:50376006
批准年份:2003
资助金额:24.00
项目类别:面上项目

相似国自然基金

1

缺失数据下加速失效时间模型的经验似然推断

批准号:11326178
批准年份:2013
负责人:袁晓惠
学科分类:A0402
资助金额:3.00
项目类别:数学天元基金项目
2

基于经验似然的纵向数据统计模型的稳健推断

批准号:10801039
批准年份:2008
负责人:秦国友
学科分类:A0402
资助金额:17.00
项目类别:青年科学基金项目
3

正相协及缺失数据情形的经验似然推断

批准号:11201088
批准年份:2012
负责人:李英华
学科分类:A0403
资助金额:23.00
项目类别:青年科学基金项目
4

缺失数据下部分线性单指标模型的经验似然推断

批准号:10971038
批准年份:2009
负责人:秦永松
学科分类:A0402
资助金额:25.00
项目类别:面上项目