With the more and more serious greenhouse effect, the research and development of new materials to efficiently CO2 separation and capture (CCS) of great importance for reducing anthropogenic greenhouse gas CO2 emissions and relieving environmental stress. Having a large surface area, tunable pore size and shape, adjustable composition and functionalizable pore surface, microporous metal-organic frameworks (MMOFs) show unique advantages and promises for potential applications in adsorption-based storage and separation technologies for small gas molecules such as CO2. In this direction the proposed research involves the self-assembly of a series of MMOFs with stable structures and controllable pore sizes based on the designed nitrogen-containing larger organic skeletons, bridged dipyridine ligands and metal ions. The effects of the pore sizes/shapes, different types of nitrogen containing groups, adsorption sites, and metal ions in MMOFs on CO2 gas selective adsorption will be carefully studied. In addition to structural changes of MMOFs, a strategy will be developed to enhance CO2 selectivity and uptake capacity simultaneously by encapsulating amine compounds and open metal ion sites onto the surface of the pores. The mechanism of CO2 selective adsorption of MMOFs will be explored at the molecular level by molecular simulation and analysis in-situ. The proposed research will pave a way for large-scale computational screening of high selectivity and uptake capacity MMOFs for CO2 separation and capture as well as contributes to a better understanding of the structure-property relationships of CO2 gas selective adsorption for MMOFs, and eventually contributes scientific evidence and rationale to the development and application of novel MMOFs.
随着温室效应日益严重,研发高效分离捕集CO2的新型材料对于缓解环境压力具有重要战略意义。微孔金属有机骨架材料(MMOFs) 具有高比表面积、结构多样性和孔道可调控性等优点,尤其在CO2气体吸附与分离等领域具有广阔的应用前景。本项目通过设计、合成富氮大有机骨架及桥联双吡啶类配体,分别与金属离子作用,组装成一系列孔径可控、稳定空间结构的微孔MOFs。详细研究金属-有机骨架结构中孔洞大小、形状、不同类型的含氮基团、吸附位点、金属离子等对CO2气体选择性吸附性能的影响,探索通过包合作用将含氮化合物及金属位点修饰到骨架孔洞的内表面,提高MMOFs对CO2吸附量和选择性。通过分子模拟及原位分析,在分子水平上研究微孔MOFs材料对CO2的选择性吸附机理,筛选高吸附量、高选择性的微孔金属有机骨架CO2 分离吸附材料,为新型MMOFs材料在CO2分离捕集中的研究与开发应用提供科学依据和理论基础。
微孔金属有机骨架材料(MMOFs)由于结构多样性、孔道可调控及性能便于调节等优点,近来受到极大的关注,尤其在CO2气体或碳氢化合物的吸附与分离等领域具有广阔的应用前景。更值得注意的是,某些物理性质可以被集成到单个框架材料中构成多功能MOFs材料。本项目通过设计、合成富氮大有机三角及V型配体,分别与金属离子作用,组装了一系列不同孔径、稳定空间结构的微孔MOFs。通过配体含氮基团的修饰和含氮基团的包合作用成功调节了MOFs材料的结构与性能,增加了CO2 吸附量和选择性,并探讨其结构与CO2 气体选择性吸附性能之间的关系。除了MOFs的设计合成及气体选择性吸附性能研究外,项目研究内容还在大分子分离及荧光探针等方面进行了拓展,成功制备了对染料有良好的吸附与分离性能及对抗生素、硝基爆炸物和金属离子有极灵敏检测能力的多功能MOFs材料,有极大的应用前景。在本项目的资助下,研究结果迄今共发表学术论文31篇,其中SCI收录28篇(影响因子大于3的15 篇),部分论文发表在Chem. Eur. J.,Chem. Commun., Inorg. Chem.,Cryst. Growth Des., Dalton Trans., Crystengcomm.等期刊上;申请中国发明专利3项。项目执行期间,培养硕士毕业生7名,3名硕士生在读。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
煤/生物质流态化富氧燃烧的CO_2富集特性
金属有机骨架材料的孔道功能化与二氧化碳吸附性能研究
类沸石咪唑酯骨架微孔材料氢吸附位点研究及分子设计
类沸石型微孔金属-有机膦酸骨架材料的合成、结构及气体分离吸附性能研究
微孔金属-有机骨架材料应用于烯烃纯化