时滞系统的强共振双Hopf分支及相关研究

基本信息
批准号:11701208
项目类别:青年科学基金项目
资助金额:23.00
负责人:蒋和平
学科分类:
依托单位:黄山学院
批准年份:2017
结题年份:2020
起止时间:2018-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:方辉平,胡玲,郑海燕
关键词:
双Hopf分支规范型时滞强共振
结项摘要

There are numerous phenomena involved in time delay, such as the feedback control in the field of engineering technology, the mature period and incubation period of biological populations. In fact, most scholars currently focus on the Hopf bifurcation, weak resonance and non resonance double Hopf bifurcation in time-delay systems. However, the study on the strong resonance double Hopf bifurcation and the existing results on this study are few. This topic studies strong resonance double Hopf bifurcation of time-delay systems and the related problems, by mainly using the theory of functional differential equation, reaction diffusion equation theory, the method of center manifold and Normal form theory. First of all, we have a analysis on strong resonance double Hopf bifurcation caused by the unique time delay in differential systems after analyzing its stability; Secondly, a study is given, which is about delay-induced resonance double Hopf bifurcation due to the existence of one or more time delays; Finally, based on the acquired outcomes and in light of the theory of delay reaction diffusion equations, we make an investigation on the resonance and non-resonance double Hopf bifurcation of reaction diffusion system with time-delay. The research results will indicate the fundamental change of dynamical behavior resulting from the time delay. This can provide certain theories to solve practical problems and further enrich the bifurcation theory in a time-delay system.

时滞现象在自然界中是普遍存在的, 比如工程技术领域的反馈控制、生物种群的成熟期和孕育期等。目前,大部分学者的工作基本都集中在时滞系统的Hopf分支、弱共振和非共振双Hopf分支等方面,对强共振双Hopf分支及相关研究成果甚少。本项目主要利用泛函微分方程理论、反应扩散方程理论、中心流形方法和规范型理论,研究时滞系统的强共振双Hopf分支及相关问题。首先,对具有单个时滞的微分系统进行稳定性分析,研究由时滞诱发的强共振双Hopf分支问题;其次,探讨由两个(或多个)时滞导致的共振双Hopf分支问题;最后,综合前期得到的成果,利用时滞反应扩散方程理论,研究时滞反应扩散系统中时滞诱发的共振和非共振双Hopf分支问题。本项目的研究成果将充分展示时滞量的变化导致系统的动力学行为发生本质影响,丰富了时滞系统的分支理论,还为解决实际问题提供一定的理论依据。

项目摘要

本课题我们主要利用中心流形方法和规范型理论研究了时滞微分系统的高余维分支问题,以及时滞反应扩散系统高余维分支问题。首先,我们考虑了时滞微分系统的弱共振和非共振双Hopf分支问题;接着,探讨了时滞微分系统的强共振双Hopf分支问题;最后,研究了时滞反应扩散系统的Turing-Hopf分支、Turing-Turing分支、双Hopf分支问题。在高余维分支点附近,我们给出了详细的动力学分类,并利用数学软件模拟分支点附近的动力学行为。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
2

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
3

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

DOI:
发表时间:2018
4

双吸离心泵压力脉动特性数值模拟及试验研究

双吸离心泵压力脉动特性数值模拟及试验研究

DOI:10.13465/j.cnki.jvs.2020.19.016
发表时间:2020
5

基于余量谐波平衡的两质点动力学系统振动频率与响应分析

基于余量谐波平衡的两质点动力学系统振动频率与响应分析

DOI:10.6052/1672⁃6553⁃2017⁃059
发表时间:2018

蒋和平的其他基金

相似国自然基金

1

时滞耦合系统共振双Hopf分岔分析

批准号:11302072
批准年份:2013
负责人:王万永
学科分类:A0702
资助金额:23.00
项目类别:青年科学基金项目
2

扩散、时滞诱发的Turing-Hopf分支及相关研究

批准号:11571257
批准年份:2015
负责人:宋永利
学科分类:A0301
资助金额:45.00
项目类别:面上项目
3

时滞微分系统的全局稳定性和全局Hopf分支研究

批准号:11601392
批准年份:2016
负责人:舒洪英
学科分类:A0301
资助金额:19.00
项目类别:青年科学基金项目
4

时滞非线性振动系统的双Hopf分岔和不变流形方法

批准号:10472083
批准年份:2004
负责人:徐鉴
学科分类:A0702
资助金额:26.00
项目类别:面上项目