结合算子理论尤其是度理论研究有p-拉普拉斯算子的非线性常微分方程、差分方程、泛函微分方程边值问题解的存在性、有界性、单调性、正解及多解的存在性、分岔。重点研究二阶和高阶的斯图姆- - 刘维尔边界条件及与拉普拉斯算子的边值问题相应的全连续算子的表达式,给出全连续算子的不动点原理。此课题是国际上重要的研究方向之一,有重大理论意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
地震作用下岩羊村滑坡稳定性与失稳机制研究
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略
~(142~146,148,150)Nd光核反应理论计算
感知的环境动态性与创业团队创新 ——基于团队成员的不确定性降低动机
拟齐次偏微分算子与亚椭圆边值问题
拟微分算子和退化椭圆型方程边值问题
带有特定类型非线性微分算子的常微分方程边值问题研究
微分系统边值问题中的非线性分析