Group theory is used to study the symmetry of graphs, which is an important research branch of algebraic graph theory. This research direction is not only closely linked with other branches of mathematics, but also widely used in the field of networks, information science and cryptology. In recent years, the theory and method of covering are widely used in the construction of symmetric graphs. This project uses the covering technology to study the construction and classification of two special symmetric graphs, namely 2-arc-transitive graphs and 2-geodesic transitive graphs. In this project, we investigate the following problems: (1) Study the construction and classification of the regular covers of 2-arc-transitive graphs, where the covering transformation groups are elementary abelian groups of high rank and nonabelian groups;(2)Study the general extension theory of finite group, and the application of the presentation theory of finite groups into the theory of covering;(3)Study and explore the regular covers of 2-geodesic transitive graphs, and develop its relevant theories. In the above research, we combine the method of finite group theory with ‘the lifted theorem of automorphism’ of the theory of covering. In some cases, such treatment successfully avoided using the classification of finite simple group while the traditional method does not work.
用群论来研究图的对称性是代数图论的一个重要分支,该研究方向不仅与其他数学分支有着密切的联系,而且在互联网、信息科学以及密码学等领域也有着广泛的应用。近年来,覆盖的理论和方法被大量应用于对称图的构造中。本项目主要是用覆盖的方法来研究两类特殊对称图的构造与分类,也即2-弧传递图和2-测地线传递图。本项目的具体研究内容如下:(1) 研究2-弧传递图的正则覆盖图的构造与分类,其中覆盖变换群为高秩的初等交换群以及非交换群;(2) 研究有限群的一般扩张理论,以及群表示论在覆盖中的应用;(3) 对2-测地线传递图的覆盖图进行系统的研究和探索,发展其相关理论。在以上研究中,我们把有限群论的方法和覆盖理论中的“自同构提升定理”巧妙的结合起来,从而在有些情况下成功地避免了借助有限单群分类的一些特定群类,使得在传统方法下不可为的工作成为可能。
本项目研究了代数图论中的两个热点问题,也即图的正则覆盖与正则嵌入。我们主要利用有限群来刻画图和曲面的对称性。这些组合结构不仅在理论层面上有着重要的意义,而且有着广泛的实际应用。我们主要研究了以下三个问题:(1)研究了2-弧传递图的正则覆盖,以及对其基本理论的探索。给出了完全二部图的覆盖变换群为循环群的完整分类;(2)研究了以可解群为自同构群的正则地图的分类问题,给出了类长为4的可定向正则幂零地图的完整分类。(3)研究了Murty-Simmon猜想,证明了当直径为2-临界图补图的独立数大于等于最小度时,Murty-Simmon猜想是成立的。我们的研究方法是充分借助数学软件Magma的帮助,把理论研究与计算验证相结合,用有限群论、有限单群、有限p-群、置换群理论、有限群的表示论以及组合数学中的方法和技巧来开展研究工作。在解决具体问题的同时,我们还发现了一些群论在组合结构中应用的新方法,从而为今后的进一步研究提供了可借鉴的工具。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
有限2-测地线传递图的研究
可解群的2-弧传递凯莱图
有限2-测地线传递图中若干问题的研究
半弧传递图与半边传递图的研究