Supramolecular polymer networks represent a novel class of crosslinking macromolecules, in which self-assembly serves as a powerful tool and holds the monomeric units together via reversible noncovalent bonds. The precise control of the self-assembly process for the further applications in the field of supramolecular elastomer materials is in keen pursuit, in which the rational choice of building blocks, as well as the elaborate manipulation of noncovalent interactions plays significantly important role. However, some drawbacks are still involved for the conventional supramolecular elastomer materials, such as the limited noncovalent interactions employed, the lack of efficient techniques to monitor the self-assembly process, as well as the undefined structure-property relationships. To address these issues, the current proposal aims to get better understanding of the self-assembly process and pursue more ordered architectures from the fundamental molecular level. Specifically, we develop novel metal-ligand building blocks with d8 electron configuration. The combination of metal-metal interactions with phase separation effect of the building blocks would facilitate the aggregation, which further contributes to the formation of crosslinking metallo-supramolecular polymers networks. It is worthy of noting that the resulting supramolecular polymer networks are much easier to monitor the self-assembly process as compared with the conventional ones, based on the specific spectroscopic properties of metal-ligand building blocks. Hence, we can get more insights into the effects of monomer parameters and supramolecualr architectures on the mechanical properties of the resulting supramolecular polymer networks. In summary, with the elaborate design of the buliding blocks and the precise manipulation of the self-assembly process, it is highly expected that the current proposal would benefit for the further development of novel supramolecular elastomer materials.
通过自组装途径构建超分子聚合物交联网络并发展其为新型的弹性体材料,是超分子聚合物领域中一个重要的发展方向。针对传统的超分子聚合物弹性体材料中,非共价键作用力的选择比较单一、自组装过程的跟踪手段相对缺乏导致自组装行为未获深入了解、组装体结构与性能间的构效关系尚不明确等局限性,本项目期望利用金属-金属相互作用为主要驱动力,通过金属-金属与微相分离相互作用的高效加合,构建新型金属基超分子聚合物交联网络,并期望利用金属配合物所具有的丰富激发态信号,能够较传统的超分子聚合物交联网络更加准确的监控自组装过程,从而阐明构筑基元的分子参数、组装体的可控性排列对于组装体宏观性质的影响规律,并致力于拓展该体系在弹性体材料领域的应用。通过系统深入的研究,预期将为超分子聚合物交联网络在驱动力及构筑基元的设计、组装体多级多层次上的结构调控、超分子聚合物弹性体功能材料的构建等方面提供新思路,促进该领域的进一步发展。
通过“自下而上”的自组装途径构建超分子聚合物并发展其为新型的超分子弹性体功能材料,是该领域中一个重要的发展方向。本项目成功构建了新型金属基超分子聚合物体系,并利用金属配合物所具有的丰富激发态信号准确监控自组装过程,从而阐明构筑基元的分子参数、组装体的可控性排列对于组装体宏观性质的影响规律,并对该类体系力学性能的优化和提升进行了相应探索,为超分子聚合物弹性体功能材料的构建提供了新的思路。在本基金的资助下,我们已在国际核心化学期刊上(影响因子均>4.0)发表SCI论文11篇,包括Angew. Chem. Int. Ed. 1篇,ACS Macro Lett. 1篇,Macromol. Rapid Commun. 2篇,Chem. Commun. 3篇,Org. Lett. 1篇及Polym. Chem. 3篇。所发表的论文被Chem. Rev.、Chem. Soc. Rev.等杂志进行大段篇幅并配图引用,入选爱思唯尔(Elsevier)“2014年中国高被引学者榜单(化学科学领域)”。鉴于我们工作的系统性和创新性,U. S. Schubert教授邀请我们在2014年美国化学会秋季年会“金属基超分子聚合物及材料”分会上做相关内容的汇报,Lutz教授邀请我们在2015年斯特拉斯堡“第四届中法双边高分子与软物质研讨会”上做相关内容的汇报。我们还在2015年全国高分子学术论文报告会“高分子组装与超分子体系”分会做邀请报告。此外我们受邀在RSC旗下杂志Polymer Chemistry组织的主题为"2015 Emerging Investigators Themed Issue"的专刊上投稿。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于二维材料的自旋-轨道矩研究进展
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
全金属骨架超分子有机金属手性材料的自组装与光电功能
超分子金属有机聚合物的精确控制自组装及功能化
功能有机配体新颖设计与有机金属超分子导向组装
运用金属-金属成键导向的自组装化学创造有机金属超分子功能新体系