Heisenberg型的群上的调和分析与Radon变换

基本信息
批准号:10971039
项目类别:面上项目
资助金额:25.00
负责人:何建勋
学科分类:
依托单位:广州大学
批准年份:2009
结题年份:2012
起止时间:2010-01-01 - 2012-12-31
项目状态: 已结题
项目参与者:张震球,程美芳,肖劲森,温丽群,冯浩,郭晓静
关键词:
Schr?dinger方程Radon变换正则性Heisenberg型群逆算子
结项摘要

Heisenberg型群也被称为H型群,是Heisenberg群的延伸和推广,在分析和几何上有着极其美妙的解释,H型群上的各类问题的研究在复分析的拟凸域、次Riemann几何、控制论、量子力学等探讨中都有重要的应用.本项目是在四元数Heisenberg型的群上建立Fourier分析理论,研究Radon的各种性质,并讨论Radon变换的值域特征刻划和各种意义下的逆算子的表达式,并将这些内容考虑推广到其他类型的H型的群上去.利用Radon变换的各种性质研究H型的群上相关的线性Schr?dinger方程和波动方程解的各种类型的正则性估计,进而探讨其在某些函数空间中的适定性.本项目是把欧氏空间和非交换调和分析以及Heisenberg型的群理论有机巧妙地结合研究Radon变换的各种性质,进而探讨H型群上的发展方程解的正则性估计,这将对H型的群上的调和分析和偏微分方程之间的相互交叉发展产生重要的意义.

项目摘要

设F2n,2是2n个生成元的自由幂零Lie群,P是它的仿射自同构群,我们研究了和P相关的F2n,2上的连续小波理论,构造出了径向小波函数,得到了Radon变换的二个等价的值域特征刻划,从欧氏空间和群Fourier变换二种途径得到不同的Radon变换的逆公式,由小波变换得到的逆公式可以对函数本身不要求其光滑性。另外,当n=1时,F2,2.为3为Heisenberg群,此时可以得出和次Laplacian算子联系的逆公式,这个结果在n大于1的情形是不对的。类似的问题可以再四元数Heisenberg群上展开讨论,但在一般的Heisenberg型的群上还有较大的困难。利用热核的估计以及次Laplacian算子和Fourier变换的关系,我们还讨论了Heisenberg群上的Riesz位势,得到Heisenberg–Pauli–Weyl不确定性不等式。过去的十年里,调幅空间不仅在时频分析中十分有用,而且被用来研究拟微分算子、Fourier乘子、Fourier积分算子和偏微分方程解的适定性估计上。我们在调幅空间上考虑了沿齐次曲线和沿超曲面的强奇异卷积算子的有界性。扭曲Laplacian是一类具有位势函数的微分算子,和Heisenberg有密切联系,由Hermite展开,我们得到了与扭曲Laplacian关联的Schrodinger方程的时空估计,在扭曲的Sobelev空间中讨论了相关的Schrodinger方程的适定性问题。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
3

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
4

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022
5

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022

何建勋的其他基金

批准号:11826009
批准年份:2018
资助金额:20.00
项目类别:数学天元基金项目
批准号:11671414
批准年份:2016
资助金额:48.00
项目类别:面上项目
批准号:11271091
批准年份:2012
资助金额:60.00
项目类别:面上项目
批准号:10671041
批准年份:2006
资助金额:23.00
项目类别:面上项目
批准号:10071039
批准年份:2000
资助金额:14.00
项目类别:面上项目

相似国自然基金

1

Heisenberg群上的调和分析与小波

批准号:10071039
批准年份:2000
负责人:何建勋
学科分类:A0205
资助金额:14.00
项目类别:面上项目
2

Heisenberg 群上的 k-平面变换

批准号:11501131
批准年份:2015
负责人:肖劲森
学科分类:A0205
资助金额:18.00
项目类别:青年科学基金项目
3

Heisenberg群上调和分析与振荡积分及其应用

批准号:10371087
批准年份:2003
负责人:张震球
学科分类:A0205
资助金额:16.00
项目类别:面上项目
4

幂零Lie群上的Radon变换的性质研究

批准号:10671041
批准年份:2006
负责人:何建勋
学科分类:A0205
资助金额:23.00
项目类别:面上项目