Hilbert C*-模扩张性质

基本信息
批准号:11326104
项目类别:数学天元基金项目
资助金额:3.00
负责人:朱竞鸣
学科分类:
依托单位:嘉兴学院
批准年份:2013
结题年份:2014
起止时间:2014-01-01 - 2014-12-31
项目状态: 已结题
项目参与者:沈丹桂
关键词:
BDF理论Hilbert扭K理论扭K同调理论C*DixmierDouady
结项摘要

The project contributes to the study of the property of Busby invariants corresponding to the extension sequences of Hilbert C*-modules. Following the established relationship between the Busby invariants of C*-algebra extension and K-Homology theory, we are going to study the property of the Busby invariants decided by Hilbert C*-module extensions. The main contents include the following aspects: 1. find the group, even ring structure on the set of all Busby invariants decided by Hilbert C*-module extensions. 2. study the relationship between the Busby invariants of the vector bundle extension, as a special case of Hilbert C*-module extension, and the elements in K-group which decide the bundle structure. 3. study the relationship between the connections and curvatures of each term in a vector bundle extension. 4. study the relationship between Hilbert C*-module extension and twisted K-Homology. This project is planned to generalize Hilbert C*-module extension to be an invariant which is more precise than C*-algebra extension then provide us a new tool, for the study of noncommutative geometry, to seek for extra information contained in extension sequences, which fully shows the value of extension theory.

本项目的主要研究对象是由Hilbert C*-模的扩张正合列所对应的Busby不变量的性质。期望通过已知的C*-代数的扩张正合列所对应的Busby不变量和K-同调理论之间的关系,来研究Hilbert C*-模扩张Busby不变量的性质。主要的研究内容有以下几个方面:1、找到Hilbert C*-模扩张的全体Busby不变量形成的集合上的群结构,甚至于环结构;2、研究特殊的Hilbert C*-模的扩张——向量丛的扩张所对应的Busby不变量和决定向量丛结构的K群元之间的关系;3、研究扩张正合列中各向量丛上的联络,曲率之间的关系;4、研究Hilbert C*-模扩张与扭K-同调理论之间的关系。本项目拟将Hilbert C*-模的扩张推广为一种比C*-代数扩张更细致的不变量,于是为非交换几何的研究提供一种新的不变量工具来挖掘扩张正合列所隐含的额外信息,从而更全面地体现扩张理论的价值。

项目摘要

本项目对于一类特殊的Hilbert C*-模——某些非紧空间上的向量丛,找到了其乘子模的几何化描述。表明了关于向量丛的上循环表达对于其乘子模同样适用。同时将这种描述应用在了Hilbert C*-模扩张上,得出了关于Hilbert C*-模扩张同伦等价性的若干结果。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

DOI:10.1080/15287394.2018.1502561
发表时间:2018
2

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

DOI:10.1016/j.eiar.2021.106623
发表时间:2021
3

基于多模态信息特征融合的犯罪预测算法研究

基于多模态信息特征融合的犯罪预测算法研究

DOI:
发表时间:2018
4

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020
5

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

DOI:10.3969/j.issn.1008-0805.2022.07.18
发表时间:2022

朱竞鸣的其他基金

相似国自然基金

1

Hilbert 模形式性质的研究

批准号:11526047
批准年份:2015
负责人:杨志善
学科分类:A0102
资助金额:3.00
项目类别:数学天元基金项目
2

复几何在Hilbert模中的应用及本质正规的Hilbert模

批准号:10801028
批准年份:2008
负责人:段永江
学科分类:A0207
资助金额:17.00
项目类别:青年科学基金项目
3

Hilbert C*-模算子代数上的Lie导子及相关问题

批准号:11801005
批准年份:2018
负责人:何俊
学科分类:A0207
资助金额:20.00
项目类别:青年科学基金项目
4

Hilbert C*-模中框架和g-框架的特征及应用研究

批准号:11761057
批准年份:2017
负责人:相中启
学科分类:A0205
资助金额:15.00
项目类别:地区科学基金项目