Due to their exceptional surface plasmon resonance property and the resulted potential application in the fields of biosensing, enhanced surface Raman spectroscopy and catalysis, noble metal nanomaterials, i.e., Au and Ag, have attracted intensive attention over the past decades. However, owing to the dramatically increased surface energy associated with the decreased size, it is very difficult to make nanomaterials with desired morphology as well as physicochemical properties. Besides, the thermal stability and the chemical stability of the nanomaterials have been significantly reduced, which has seriously limited the industrial applications of such nanomaterials. By using silver nanoplates as the model materials, this proposal aims at developing a novel synthetic strategy to controllably synthesize nanomaterials in a large scale and a unique core-shell nanostructure to enhance the stability of silver nanomaterials. An oxidative agent, hydrogen peroxide or iron nitrate, will be used to induce the formation of defects in silver seeds in a controllable manner. The silver nanomaterials will be further coated with a thin layer of gold or platinum to form a core-shell nanostructure. Thanks to the chemically more stable shell, the chemical stability of silver nanomaterials against oxidative etching will be significantly enhanced. The as-obtained materials will be used in the application of biosensing and photocatalysis. There are several benefits from this proposed project. For example, we can have a better understanding on the growth mechanism of anisotropic nanostructures. Additionally, we may be able to provide a highly efficient and reliable solution to the industrial applications of such metal nanostructures.
金、银等贵金属纳米材料具有特殊的表面等离子共振性质,因而在生物传感、表面增强拉曼和催化等领域具有广阔的应用前景。但是随着纳米粒子尺寸的降低,其表面能急剧增加,使得精确合成具有特定形貌的纳米颗粒变得极其困难,同时也大大降低了其稳定性,这些都严重制约了贵金属纳米材料的大规模工业应用。为解决这一系列的难题,本项目将以银纳米片(silver nanoplate)为主要的研究对象,旨在开发一种新型的贵金属纳米粒子的可控合成策略,在此基础上发展以核壳结构为代表的新型功能纳米材料,并初步探讨该类材料在生物传感和光催化等各个领域的应用。拟采用氧化蚀刻晶种的方法来精确调控纳米颗粒的形貌,再将银纳米材料包埋在更稳定的金、铂等原子层之下,以显著增强其稳定性。该课题的设立和顺利实施,一方面可揭示各向异性纳米结构的生长机理,另一方面也有望为贵金属纳米材料的工业化应用提供一套高效、可靠的解决方案。
金、银、铂、钯等贵金属纳米材料具有特殊的表面等离子共振性质,因而在生物传感、表面增强拉曼和催化等领域具有广阔的应用前景。但是随着纳米粒子尺寸的降低,其表面能急剧增加,使得精确合成具有特定形貌的纳米颗粒变得极其困难,同时也大大降低了其稳定性,这些都严重制约了贵金属纳米材料的大规模工业应用。为解决这一系列的难题,本项目以银纳米片(silver nanoplate)为主要的研究对象,开发了一种新型的贵金属纳米粒子的可控合成方法,在此基础上发展了以核壳结构为代表的新型功能纳米材料,并初步探讨了该类材料在生物传感、光电催化、气相催化等各个领域的应用。该项目的顺利实施,一方面揭示了各向异性纳米结构的生长机理,另一方面也为贵金属纳米材料的工业化应用提供一套高效、可靠的解决方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
稳定的银纳米团簇的合成、结构及性能研究
银基金属纳米材料的各向异性生长机理、可控合成和光学性能调控研究
新型复合纳米材料的可控合成及光催化性能研究
复杂超结构无机纳米材料的可控制合成及性能研究