Solar driven photocatalysts technology organic pollutants and preparation of fuel are seen as a viable strategy for solving energy crisis and environmental problems. However, it has some disadvantages keeping back its large-scale application, such as low the solar energy conversion efficiency of photocatalytic materials, low reaction rate. The project plan to kind of graphite carbon nitride (g-C3N4), typical rare-earth metal oxide CeO2 and layered transition metal sulfides (MoS2) composite system as the object, make full use of 2D layer structure and its physical and chemical properties, thickness and structure controlled by hydrothermal method for the preparation of ternary g-C3N4/CeO2/MoS2 composites, applied to photocatalytic degradation of organic pollutants. Combining with first principles calculation factors such as thickness and structure of the g-C3N4/CeO2/MoS2 composites, and the interface interaction of this kind of ternary composites charge transfer and adsorption-catalytic synergy effect in the process of photocatalytic, revealing the physical mechanism of the enhanced photocatalytic performance. This design is a significant step toward the fine-tuning of thickness, structure and photocatalytic properties of ternary nanocomposites. The project completed, will provide efficient and stable ternary composite photocatalytic materials experimental and theoretical foundation for the design and application.
利用太阳能降解水中有机污染物或制备燃料的光催化技术是解决环境污染和能源短缺问题的理想途径之一,但目前光催化材料的太阳能转换效率低, 反应速度慢是制约该技术大规模应用的瓶颈。本项目以类石墨相氮化碳(g-C3N4)、典型稀土金属氧化物(CeO2)及其层状过渡金属硫化物(MoS2)复合体系为研究对象,充分利用二维层状结构和其物化特性,采用水热法制备厚度和结构可控的g-C3N4/CeO2/MoS2三元纳米复合光催化材料,并将其应用于有机污染物光催化降解。结合第一性原理计算三元复合材料厚度和结构、及其界面相互作用等因素对其光催化过程中的电荷转移和吸附-催化协同效应等的影响,揭示其增强光催化性能的物理机制,实现三元纳米复合催化材料厚度、结构和光催化性能的调控。本项目的实施,将为高效稳定的三元复合光催化材料的设计及其应用提供实验和理论依据。
利用太阳能降解水中有机污染物或制备燃料的光催化技术是解决环境 污染和能源短缺问题的理想途径之一,但目前光催化材料的太阳能转换效率低, 反应速度慢是制约该技术大规模应用的瓶颈。本项目拟以类石墨相氮化碳(g-C3N4)、典型稀土金属氧化物(CeO2)、二硫化钼(MoS2)及其硫化锌镉(ZnxCd1-xS)为载体,用层状热法等制备厚度和结构可控的g-C3N4/CeO2,CeO2/ZnxCd1-xS和g-C3N4/MoS2 二维-二维纳米复合材料,并将其应用于有机污染物光催化降解。结合材料表征特性及其复合材料厚度和结构、及其界面相互作用等因素,分析其光催化过程中的电荷转移和吸附-催化协同效应等的影响,揭示其增强光催化性能的物理机制,实现复合催化材料厚度、结构和光催化性能的调控。本项目的完成,将为高效稳定的多元复合光催化材料的设计及其应用提供实验和理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
新型石墨烯/贵金属/金属氧化物复合纳米材料的可控合成及光催化性能研究
高效抗菌、抗藻、光催化多功能纳米复合材料的可控合成、机理及性能研究
基于异形纳米天线的复合光催化材料合成及性能表征
可见光响应的可控核壳型纳米复合光催化材料合成、结构和性能研究