The evanescent field excitated at the surface of metal micro and nano-particles is very sensitive to the changes of external environment, which can be used to implement the real-time measurement of refractive index, temperature and humidity. In recent years, scientists have been mainly studying the optical sensing of metal micro and nano particles doped polymer fiber, which is easy to prepare and shape. However, its melting point is too low. This polymer fiber can only work in a specific wavelength band and is demanding for the surrounding environment. The metal micro and nano-particles doped quartz fiber in this project has a very high transmittance in the visible and infrared wavelength band, as well as the resistence to high temperatures and chemical corrosion. The project's researches include: the computational simulation of the impaction on the transmission spectrum from the physical variables, such as the geometric parameters, environmental refractive index, temperature and humidity of the metal micro and nano-particles doped quartz fiber structures; the exploration and research of the experimental operation methods and attentions in preparing the structures; the examination of the refractive index, temperature and humidity sensing characteristics through experiments; the optimization of the geometric parameters through the comparison and verification of the experimental data and simulation. This project aims to study the muti-parameters optical sensing properties of metal micro and nano-particles doped quartz fiber structures and provide the theoretical and technical supports for the realization of novel, high sensitivity, high precision and economy miniature optical fiber sensors.
在微纳米金属粒子表面激发的衰逝场,对外界环境变化非常敏感。可用于实现对折射率、温度和湿度的实时测量。近些年来,科学家们主要研究金属微纳米粒子掺杂聚合物光纤的光学传感,这种材料制备容易,易于成型。但是熔点过低,并且只能工作在特定波段,对周围环境的要求苛刻。本项目研究的金属微纳米粒子掺杂石英光纤,在可见光及红外光具有非常高的透射率,而且耐高温和化学腐蚀。本项目的研究内容包括:针对金属微纳米粒子掺杂石英光纤结构,计算模拟其几何参数、环境折射率、温度和湿度等物理变量对其透射光谱的影响规律;探索和研究制备该光纤结构的实验操作方法和注意事项;通过实验研究其折射率、温度和湿度的传感特性;通过实验数据和仿真计算的对比验证,优化其几何参数。本项目旨在研究金属微纳米粒子掺杂石英光纤结构的多参量光学传感特性,为实现新颖、高灵敏度、高精度和经济的微型光学光纤传感器件奠定理论和技术基础。
本项目利用物理掺杂和一步拉伸技术使用微纳米金属粒子和空心光纤制备石英微纳光纤,并实现折射率、温度、气体等传感应用的相关研究;并且针对聚合物封装的微纳米光纤结构的温度和应力传感特性也进行了初步研究。本项目已经完成的研究内容包括:系统研究了金纳米粒子掺杂微纳米光纤的光学特性和折射率、葡萄糖浓度传感特性;设计并研究了金属钯纳米粒子掺杂聚合物微纳米光纤的折射率和痕量氢气传感特性,并通过与无掺杂聚合物微纳米光纤的折射率和氢气传感特性的实验比对,验证金属钯纳米粒子的氢气灵敏度增强特性;采用PDMS对微纳米光纤结构进行封装,设计并实验研究了温度、应力微型传感芯片的传感特性。本项目针对微纳米光纤传感探头的相关研究成果,将为下一步嵌入式微型生物传感芯片的研究提供实验依据和理论参考,极大丰富先进光纤传感技术的研究内容,促进智能化、微型化、嵌入式生物传感芯片的应用发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
具有金属纳米粒子和稀土离子掺杂复合体系的多孔石英玻璃光纤研究
稀土纳米晶/金属纳米粒子共掺杂的微纳光纤激光器
水下多参量光纤传感基础研究
贵金属纳米粒子掺杂微纳光纤的可控制备和光学性能调控