In order to meet the growing demand of electrochemical machining(ECM) accuracy,the double suface precision ECM technology with pulsed voltage and electrode vibration superposition control will be studied in this project. A new superposition method between pulsed voltage and electrode vibration is presented in this project. In this mathod, processing power will be switched on when cathode and anode at the minimum distance. And processing power will be switched off when cathode move to a certain distance apart with anode. Processing cycle is always at the time when cathode keep away from anode. The method will prevent the ECM product to block the machining gap, reduce the processing accident risk such as short circuit,improve the machining accuracy. This method will improve the possibility to minimize the machining gap. By using the processing method, the accumulation process and motion law of ECM product in machining gap,the electrolyte flow field characteristics in double suface ECM,the processing status online adjustment will be studied in this project. Reveal the connection between the processing parameters, the machining precision and the processing stability. Explore the processing method and mode to improve the machining accuracy of double suface ECM. On the basis of the above research, experimental investigation on double suface ECM of blisk with pulsed voltage and electrode vibration superposition control will be conducted to improve the machining accuracy and stability. The process will be optimized to machining the complex precision components such as aero engine blisks. Groundbreaking achievements and a wide range of industrial applications will be obtained by this project.
为了满足日益提升的精度需求,本项针对脉冲与振动叠加的双面精密电解加工技术开展研究,提出了一种新型脉冲与振动叠加方式,该方式于工具运动至最小间隙时通电加工,工具回退至一定间隙后断电冲刷,使通电加工周期始终处于间隙扩张阶段。该叠加方式可有效防止产物堵塞加工间隙,减少短路等加工意外机率,显著提升加工稳定性,使加工间隙进一步减小成为可能。基于上述加工方法,本项目针对加工间隙中电解产物的堆积过程、产物的运动规律、双面加工中电解液流场特性、加工过程在线调整等内容开展研究,揭示加工参数与加工精度之间的联系,探索进一步提升双面电解加工精度的方式与方法。在上述研究基础上,开展脉冲与振动可控叠加的整体叶盘双面精密电解加工试验研究,优化工艺方法,为整体叶盘等复杂精密构件的制造奠定基础。本课题的研究将获得具有自主知识产权的原创性成果,获得重要和广泛的工业应用。
整体叶盘/叶片是航空发动机中最为重要的零部件,其型面扭曲、结构复杂、材料难加工、精度要求高,对制造技术提出了很高要求。电解加工技术是加工航空发动机整体叶盘/叶片等关重零部件的重要制造方法。项目针对整体叶盘/叶片等复杂曲面零部件脉冲与振动可控叠加的双面电解加工技术开展研究。在分析加工电流前置与工具振动现象的基础上,提出一种脉冲与振动前置叠加的新方法。建立了加工间隙交替变化下的流场模型,采用有限元分析方法得到了加工间隙内气泡率、热量沿程分布规律,结合高速摄像观测与加工电流波形分析,掌握了脉冲与振动叠加方式对电解加工产物输运的影响。与传统脉冲与振动对称叠加相比,前置叠加方式进一步减小了加工间隙,提升了加工精度。针对整体叶盘/叶片零件结构与材料的特点,突破了三维复合电解液流场方式、工具最优进给方向优化设计、加工电流全过程控制等关键技术,掌握了材料电化学溶解特性,研制出镍基高温合金整体叶盘和钛铝金属间化合物叶片样件。项目涉及的加工方法可应用于各类复杂型面零部件电解加工,具有重要科学意义和广泛的工业应用价值。项目发表录用论文9篇,其中SCI或EI论文4篇。授权发明专利2项,申请4项。培养研究生6名。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
多源数据驱动CNN-GRU模型的公交客流量分类预测
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
变幅值脉冲可控调节电火花-电解复合加工基础研究
高频、窄脉冲电流精密电解加工机理及其特殊工艺规律研究
大型钛合金薄壁回转体零件精密对转电解加工基础研究
微细倒锥喷孔精密成形与光整电解加工工艺