Cancer cells utilize glycolysis instead of oxidative phosphorylation even in the presence of sufficient oxygen to generate ATP, which, also known as “Warburg effect”, has been recognized as a hallmark of cancer. Phosphoglycerate mutase 1 (PGAM1) is known to coordinate glycolysis, pentose phosphate pathway (PPP) flux and serine biosynthesis via regulating the conversion of 3-phosphoglycerate to 2-phosphoglycerate and is related with poor prognosis in breast cancer, which make it an attractive anti-tumor target. We identified a new PGAM1 inhibitor in our previous work. Meanwhile, like other glucose metabolism inhibitors, there lack sensitive subset of cancers, which is a bottleneck of metabolic inhibitors development. Combinational therapies are promising opportunities for metabolic inhibitors. We unvealed the treatment combined PGAM1 inhibitor with PI3K/AKT inhibitor against breast cancer cells. This project is going to confirm the synergy effect of PI3K inhibitors with PGAM1 inhibitors based on the previous work and investigate the molecular mechanism of the synergy effect. This project will provide mechanistic insight into the interaction relationship between glucose metabolism and PI3K/AKT signaling pathway and proposal a new therapeutic strategy combining PGAM1 inhibitors and inhibitors against PI3K/AKT pathway, which may provide useful information for the targeting therapy in breast cancer.
肿瘤代谢异常是肿瘤组织区别于正常组织的重要特征之一,靶向肿瘤代谢异常是新近备受关注的抗肿瘤策略。磷酸甘油酸变位酶PGAM1同时调控糖酵解、磷酸戊糖途径和丝氨酸合成途径,处于糖代谢的核心位置,在乳腺癌等中高表达且与乳腺癌预后相关,被认为是一个潜在的抗乳腺癌靶点。本项目前期研究发现PGAM1抑制剂并在此基础上开展联合用药策略研究,发现PGAM1抑制剂和PI3K/AKT通路抑制剂协同抗乳腺癌作用。本项目拟在前期基础上,确证PGAM1抑制剂联合PI3K/AKT抑制剂对不同亚型乳腺癌的治疗作用,并聚焦肿瘤代谢通路调控,探索二者协同抗肿瘤的分子机制。我们希望这些工作能阐明糖代谢与肿瘤信号通路之间的相互作用关系,同时提出PGAM1抑制剂的应用策略,为乳腺癌靶向治疗提供新思路。
肿瘤细胞能量代谢异常是肿瘤组织区别于其他正常组织的重要特征之一,其中,尤以糖代谢异常最为突出,主要表现为肿瘤细胞即使在有氧情况下,也主要依赖糖酵解途径进行能量获取。磷酸甘油酸变位酶(PGAM1)是有氧糖酵解途径中的一个重要代谢酶,通过催化磷酸基团在磷酸甘油酸之间的转位,将3-磷酸甘油酸(3-PG)催化成2-磷酸甘油酸(2-PG),在葡萄糖有氧糖酵解过程中至关重要。.和大多数肿瘤代谢酶一样,目前尚未发现PGAM1的癌基因依赖肿瘤,因而可以预见PGAM1抑制剂的抗肿瘤效果相对较弱,开展联合用药策略的探索尤为必要。为此,我们以PGAM1稳定干扰的肿瘤细胞株为研究模型(避免了PGAM1小分子探针特异性不明的问题),筛选了对78种临床和在研分子靶向抗肿瘤小分子抑制剂的敏感性。结果发现,干扰PGAM1后细胞对PI3K抑制剂的敏感性增强,提示PGAM1抑制剂与PI3K抑制剂的联用。为了认识相关的分子机制,我们运用蛋白激酶芯片全面考查抑制PGAM1对肿瘤细胞信号通路的影响,结果发现干扰PGAM1能上调Akt磷酸化水平,提示PI3K-Akt通路的激活,并在多株高表达PGAM1的肿瘤细胞株中得到验证。通过回转野生型WT-PGAM1表达质粒和酶活失活突变体PGAM1-H186R、PGAM1-Y92F表达质粒,发现上述效应是依赖于PGAM1酶活功能。.基于此,我们系统考察了受由PGAM1酶活调控的糖酵解、磷酸戊糖途径和丝氨酸合成途径对PI3K-Akt通路的影响,结果发现上述三条代谢通路受阻,均贡献于PI3K-Akt通路的上调,且还原性代谢产物NADPH的减少是核心原因。.我们发现细胞内NADPH的减少伴随着ROS增多,是PI3K-Akt通路激活的关键所在。ROS清除剂N-乙酰半胱氨酸(NAC)能够有效逆转 PGAM1抑制引起PI3K-Akt通路上调。以上结果提示,干预PGAM1酶活功能,导致细胞内氧化还原平衡的打破,细胞内ROS增多,激活PI3K-Akt通路,且上述现象在糖代谢通路中广泛存在。克隆形成实验表明,干预PGAM1酶活调控的糖酵解、磷酸戊糖途径或丝氨酸合成途径,均能增敏肿瘤细胞对PI3K-Akt通路抑制剂 GDC-0941的敏感性,提示与PI3K-Akt通路抑制剂联用对于糖代谢酶抑制剂的应用具有普遍的指导意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
作用于磷酸甘油酸变位酶1变构位点的抑制剂设计、合成及生物活性测定
人二磷酸甘油酸变位酶与磷酸甘油酸变位酶的结构与功能研究
靶向ZEB1的小分子抑制剂对乳腺癌化疗的增敏作用及其机理研究
组蛋白去乙酰化酶抑制剂对肺癌放射增敏分子机制研究