几类分数阶微分动力系统的稳定性问题研究

基本信息
批准号:11602305
项目类别:青年科学基金项目
资助金额:20.00
负责人:张凤荣
学科分类:
依托单位:中国石油大学(华东)
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:钱德亮,王媛媛,李英杰,李三芸
关键词:
分数阶微分动力系统稳定性RiemannLiouville导数分数阶微积分Caputo导数
结项摘要

The fractional differential dynamical systems are being extensively applied to many fields of science and engineering since fractional calculus provides a powerful tool for the description of memory and hereditary effects in various substances. So, the qualitative theorem analysis of fractional differential dynamical systems is a meaningful research topic. Based on the applicant's research work on stability of linear fractional differential systems, this project mainly aims at nonlinear fractional differential dynamical systems with Caputo and Riemann-Liouville derivative. By employing the equivalent system, the fixed point theorem, the comparison principle and fractional Lyapunov direct method, we will study the following research contents: 1) The stability of Caputo type nonlinear fractional differential dynamical system with the same order lying in (1,2); 2) The stability of Riemann-Liouville type nonlinear fractional differential dynamical system with the multiple-rational orders lying in (0,2); 3) The stability of Riemann-Liouville type nonlinear fractional differential dynamical system with the same order lying in (0,2). Results of this project can not only enrich the qualitative theory of fractional differential dynamical systems, but also provide the theoretical foundation for many actual problems (such as the mechanical property of complex viscoelastic material).

分数阶微积分可以很好地描述物质的记忆和遗传性质,使得分数阶微分动力系统越来越广泛地应用于科学和工程的众多领域。因此,分数阶微分动力系统的定性理论分析是一个非常有意义的研究课题。基于申请人已完成的分数阶线性微分系统的稳定性研究工作,本课题主要针对Caputo型和Riemann-Liouville型非线性分数阶微分动力系统,利用等价系统、不动点定理、比较原理、分数阶Lyapunov函数法等研究以下内容:1)阶位于1到2之间任意实数的Caputo型非线性同分数阶微分动力系统的稳定性;2)阶位于0到2之间有理数的Riemann-Liouville型多分数阶微分动力系统的稳定性;3)阶位于0到2之间任意实数的Riemann-Liouville型同分数阶微分动力系统的稳定性。本项目的研究不仅可以丰富分数阶微分动力系统的定性理论,还可以为大量实际问题(如复杂黏弹性材料的力学特性)提供有力的理论支撑。

项目摘要

分数阶微积分可以很好地描述物质的记忆和遗传性质,使得分数阶微分系统越来越广泛地应用于科学和工程的众多领域。因此,分数阶微分系统的定性理论分析是一个非常有意义的研究课题。基于申请人已完成的分数阶线性微分系统的稳定性研究工作,本项目主要研究了几类分数阶微分系统的动力学行为。具体内容为:1)推导了Caputo型变系数时滞分数阶微分系统的有限时间稳定性的充分条件;2)分析了一个分数阶随机禽流感传染病模型的持久性与灭绝性,并证明遍历的平稳分布的存在性,同时在数值上进行了验证;3)利用特征根分布给出了几类分数阶(时滞)反应扩散捕食模型的Hopf分支的存在性,通过规范型理论和中心流形定理给出决定分支周期解的稳定性和Hopf分支方向的算法,且借助于数值模拟来例证所得的理论结果。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020
2

A Diffeomorphic Image Registration Model with Fractional-Order Regularization and Cauchy-Riemann Constraint

A Diffeomorphic Image Registration Model with Fractional-Order Regularization and Cauchy-Riemann Constraint

DOI:10.1137/19m1260621
发表时间:2020
3

采用黏弹性人工边界时显式算法稳定性条件

采用黏弹性人工边界时显式算法稳定性条件

DOI:10.11883/bzycj-2021-0196
发表时间:2022
4

分数阶微分方程奇异系统边值问题正解的存在性

分数阶微分方程奇异系统边值问题正解的存在性

DOI:10.13718/j.cnki.xdzk.2019.04.015
发表时间:2019
5

基于渐近均匀化理论的黄土高原草本植物固土效果模拟

基于渐近均匀化理论的黄土高原草本植物固土效果模拟

DOI:10.11975/j.issn.1002-6819.2020.09.019
发表时间:2020

张凤荣的其他基金

批准号:61303263
批准年份:2013
资助金额:23.00
项目类别:青年科学基金项目
批准号:41671216
批准年份:2016
资助金额:66.00
项目类别:面上项目
批准号:70673104
批准年份:2006
资助金额:20.00
项目类别:面上项目
批准号:49070032
批准年份:1990
资助金额:3.50
项目类别:面上项目
批准号:41271111
批准年份:2012
资助金额:75.00
项目类别:面上项目
批准号:49871005
批准年份:1998
资助金额:14.00
项目类别:面上项目
批准号:11426217
批准年份:2014
资助金额:3.00
项目类别:数学天元基金项目
批准号:41140013
批准年份:2011
资助金额:20.00
项目类别:专项基金项目

相似国自然基金

1

分数阶偏微分方程的正则性问题

批准号:11571020
批准年份:2015
负责人:周蜀林
学科分类:A0304
资助金额:45.00
项目类别:面上项目
2

几类分数阶微分方程的数值计算方法研究

批准号:11901435
批准年份:2019
负责人:肖静宇
学科分类:A0504
资助金额:20.00
项目类别:青年科学基金项目
3

几类分数阶微分方程的谱亏损校正方法研究

批准号:11801077
批准年份:2018
负责人:吕春婉
学科分类:A0501
资助金额:22.00
项目类别:青年科学基金项目
4

分数阶微分系统的鲁棒稳定与镇定

批准号:61104072
批准年份:2011
负责人:兰永红
学科分类:F0301
资助金额:23.00
项目类别:青年科学基金项目