Chemical oxygen-iodine laser has been one of the most promising high power laser system for applications. The atomic iodine density in the lasering medium is the key issue for the gain capacity and output power of the laser. The method for atomic iodine in situ production commonly used in practice consumes a lot of delta oxygens in decomposing iodine molecules, which results in limited gain capacity and output power level. Some promosing methods has been proposed for atomic iodine production via iodine containing molecule decomposition assisted by various kinds of discharges. This proposal will carry out deep investigation on the physics and feasibility of a novel technical scheme for atomic iodine production and transportation, which ultilizes the plasma jets with DBD configuration. The DBD discharge will decompose iodine-containing molecules, such as I2\CH3I\CF3I,with high efficiency,and the discharge effluent will carry the atomic iodine products of the discharge into the downsteam in form of jets. Due to the electronegativity of the molecules, the electrode structure will be designed deliberatedly to ensure the discharge stability and homogeneity. By combining experiment, diagnostics, simulation and process design, the exploration will focus at various physics issues concerning of the iodine containing molecule decomposition preocess, the discharge mechanism, the transport and loss physics of the atomic iodines and the plasma jet formation mechanics. The results of the investigation are expected as the following. On the one hand, the physical relation between the iodine molecule decomposition and the discharge art will be clarified and therefore some rules for high efficient decompostion of iodine-containing molecules can be established to guide the optimization on the discharge condition parameters.On the other hand, an elaborated knowlegde about the loss mechanism and transport laws of atomic iodines in the plasma jet and its effluent will be set up and therefore some crafts for atomic iodine preservation can be erected as the physical and technical bases for efficient transportation art of atomic iodines. It is expected from proposal that a novel technological scheme for high density atomic iodine production and supersonic beam transportation can be generated basing on novel DBD cold plasma jets.
氧碘化学激光器技术是目前最具现实应用前景的高功率激光系统之一,碘原子浓度是决定激光器系统增益能力和功率输出的最关键因素之一。目前采用的现场制备碘原子方法消耗大量活性氧,抑制增益能力和功率。放电辅助分解是备受关注的一类新型碘原子高效制备技术。发挥大气压DBD射流放电的优势特点,本项目研究 DBD放电实现含碘分子(I2\CH3I\CF3I)高效分解制备高密度碘原子,并达到射流化形态产生定向原子束实现碘原子高效输运的新方法的技术原理和工艺可行性。针对碘源分子电负性,设计复合放电电极结构,实现稳定放电,进行放电参数实验、状态诊断与模拟研究、工艺设计研究,进而针对碘源分子分解、放电状态及其演化、碘原子传输及损失机理、超音喷射而成束之技术等问题开展探索;弄清碘源分子分解与放电的作用机理,寻找高效分解工艺,建立标准放电条件;弄清碘原子传输与损失机理和规律,探索碘原子高效保持条件和工艺,发展高效传输技术。
氧碘化学激光器技术是最具现实应用前景的高功率激光系统之一,碘原子浓度是决定激光器系统增益能力和功率输出的最关键因素之一。目前采用的现场制备碘原子方法消耗大量活性氧,抑制增益能力和功率。放电辅助分解是备受关注的一类新型碘原子高效制备技术。本项目研究 了利用DBD放电实现含碘分子CH3I高效分解制备高密度碘原子,并达到射流化形态产生定向原子束实现碘原子高效输运的新技术工艺,实现了在300-600Torr气压范围内的稳定放电和碘原子束流定向输运工艺,开展了多个工艺参数的优化,并在合作单位的COIL装置上开展了现场验证实验,实现了激光输出增益的改善,5%左右。由于现场验证试验的机时限制,没有进行充分优化,因此改善不够大,仍有提高空间。执行过程中,针对碘源分子电负性,设计了三种复合放电电极结构,实现了稳定放电,得到了一种能量转化效率高、使用寿命较长的原理样机设计,并研制了一台原理样机。利用原理样机进行了放电参数实验、状态诊断与模拟研究、工艺设计研究,进而针对碘源分子分解、放电状态及其演化、碘原子传输及损失机理、超音喷射而成束之技术等问题开展了实验和理论模拟相结合的探索;弄清了碘源分子分解与放电的作用机理,建立了一些列优化放电条件;初步弄清了碘原子传输与损失的几种过程,尝试了两种保持碘原子密度的工艺条件,基本掌握了碘原子束高效传输的手段.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
气载放射性碘采样测量方法研究进展
感应不均匀介质的琼斯矩阵
结核性胸膜炎分子及生化免疫学诊断研究进展
高压工况对天然气滤芯性能影响的实验研究
高强度亚稳态氪原子束流制备技术研究
等离子体射流预电离高压脉冲DBD放电产生高密度等离子体及其在气体流场控制中的研究
原子束光学
氮原子束辅助激光溅射合成ZnSe:N薄膜及其性质研究